Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1

Abstract

The 5′→3′ exoribonucleases (XRNs) have important functions in transcription, RNA metabolism and RNA interference. The structure of Rat1 (also known as Xrn2) showed that the two highly conserved regions of XRNs form a single, large domain that defines the active site of the enzyme. Xrn1 has a 510-residue segment after the conserved regions that is required for activity but is absent from Rat1/Xrn2. Here we report the crystal structures of Kluyveromyces lactis Xrn1 (residues 1–1,245, E178Q mutant), alone and in complex with a Mn2+ ion in the active site. The 510-residue segment contains four domains (D1–D4), located far from the active site. Our mutagenesis and biochemical studies show that their functional importance results from their ability to stabilize the conformation of the N-terminal segment of Xrn1. These domains might also constitute a platform that interacts with protein partners of Xrn1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of Xrn1.
Figure 2: Structure of K. lactis Xrn1.
Figure 3: Unique structural features in Xrn1.
Figure 4: Structure of the active site of K. lactis Xrn1.
Figure 5: Biochemical studies on the nuclease activity of K. lactis Xrn1.
Figure 6: RNA binding activity of K. lactis Xrn1.
Figure 7: Conserved surface features in the structure of K. lactis Xrn1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    Article  CAS  Google Scholar 

  2. Newbury, S.F. Control of mRNA stability in eukaryotes. Biochem. Soc. Trans. 34, 30–34 (2006).

    Article  CAS  Google Scholar 

  3. Bousquet-Antonelli, C., Presutti, C. & Tollervey, D. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102, 765–775 (2000).

    Article  CAS  Google Scholar 

  4. Gatfield, D. & Izaurralde, E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429, 575–578 (2004).

    Article  CAS  Google Scholar 

  5. Coller, J. & Parker, R. Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861–890 (2004).

    Article  CAS  Google Scholar 

  6. Zabolotskaya, M.V., Grima, D.P., Lin, M.-D., Chou, T.-B. & Newbury, S.F. The 5′-3′ exoribonuclease Pacman is required for normal male fertility and is dynamically loalized in cytoplasmic particles in Drosophila testis cells. Biochem. J. 416, 327–335 (2008).

    Article  CAS  Google Scholar 

  7. Amberg, D.C., Goldstein, A.L. & Cole, C.N. Isolation and characterization of RAT1: an essential gene of Saccharymyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6, 1173–1189 (1992).

    Article  CAS  Google Scholar 

  8. Kenna, M., Stevens, A., McCammon, M. & Douglas, M.G. An essential yeast gene with homology to the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity. Mol. Cell. Biol. 13, 341–350 (1993).

    Article  CAS  Google Scholar 

  9. di Segni, G., McConaughy, B.L., Shapiro, R.A., Aldrich, T.L. & Hall, B.D. TAP1, a yeast gene that activates the expression of a tRNA gene with a defective internal promoter. Mol. Cell. Biol. 13, 3424–3433 (1993).

    Article  CAS  Google Scholar 

  10. Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).

    Article  CAS  Google Scholar 

  11. West, S., Gromak, N. & Proudfoot, N.J. Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    Article  CAS  Google Scholar 

  12. Luo, W., Johnson, A.W. & Bentley, D.L. The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev. 20, 954–965 (2006).

    Article  CAS  Google Scholar 

  13. Kaneko, S., Rozenblatt-Rosen, O., Meyerson, M. & Manley, J.L. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3′ processing and transcription termination. Genes Dev. 21, 1779–1789 (2007).

    Article  CAS  Google Scholar 

  14. El Hage, A., Koper, M., Kufel, J. & Tollervey, D. Efficient termination of transcription by RNA polymerase I requires the 5′ exonuclease Rat1 in yeast. Genes Dev. 22, 1069–1081 (2008).

    Article  CAS  Google Scholar 

  15. Kawauchi, J., Mischo, H., Braglia, P., Rondon, A. & Proudfoot, N.J. Budding yeast RNA polymerases I and II employ parallel mechnisms of transcriptional termination. Genes Dev. 22, 1082–1092 (2008).

    Article  CAS  Google Scholar 

  16. Luke, B. et al. The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol. Cell 32, 465–477 (2008).

    Article  CAS  Google Scholar 

  17. Chernyakov, I., Whipple, J.M., Kotelawala, L., Grayhack, E.J. & Phizicky, E.M. Degradation of several hypomodified mature tRNA species in Saccharocmyces cerevisiae is mediated by Met22 and the 5′-3′ exonucleases Rat1 and Xrn1. Genes Dev. 22, 1369–1380 (2008).

    Article  CAS  Google Scholar 

  18. Shobuike, T., Tatebayashi, K., Tani, T., Sugano, S. & Ikeda, H. The dhp1+ gene, encoding a putative nuclear 5′→3′ exoribonuclease, is required for proper chromosome segregation in fission yeast. Nucleic Acids Res. 29, 1326–1333 (2001).

    Article  CAS  Google Scholar 

  19. Gy, I. et al. Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19, 3451–3461 (2007).

    Article  CAS  Google Scholar 

  20. Olmedo, G. et al. Ethylene-insensitive5 encodes a 5′→3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc. Natl. Acad. Sci. USA 103, 13286–13293 (2006).

    Article  CAS  Google Scholar 

  21. Potuschak, T. et al. The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18, 3047–3057 (2006).

    Article  CAS  Google Scholar 

  22. Gazzani, S., Lawrenson, T., Woodward, C., Headon, D. & Sablowski, R. A link between mRNA turnover and RNA interference in Arabidopsis. Science 306, 1046–1048 (2004).

    Article  CAS  Google Scholar 

  23. Page, A.M., Davis, K., Molineux, C., Kolodner, R.D. & Johnson, A.W. Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res. 26, 3707–3716 (1998).

    Article  CAS  Google Scholar 

  24. Solinger, J.A., Pascolini, D. & Heyer, W.-D. Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol. Cell. Biol. 19, 5930–5942 (1999).

    Article  CAS  Google Scholar 

  25. Yang, W., Lee, J.Y. & Nowotny, M. Making and breaking nucleic acids: Two-Mg2+-ion catalysis and substrate specificity. Mol. Cell 22, 5–13 (2006).

    Article  CAS  Google Scholar 

  26. Xiang, S. et al. Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 458, 784–788 (2009).

    Article  CAS  Google Scholar 

  27. Xue, Y. et al. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol. Cell. Biol. 20, 4006–4015 (2000).

    Article  CAS  Google Scholar 

  28. Stevens, A. & Poole, T.L. 5′-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1. J. Biol. Chem. 270, 16063–16069 (1995).

    Article  CAS  Google Scholar 

  29. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  30. Maurer-Stroh, S. et al. The tudor domain 'royal family': tudor, plant Agenet, chromo, PWWP and MBT domains. Trends Biochem. Sci. 28, 69–74 (2003).

    Article  CAS  Google Scholar 

  31. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).

    Article  CAS  Google Scholar 

  32. Sun, B. et al. Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J. Biol. Chem. 283, 36504–36512 (2008).

    Article  CAS  Google Scholar 

  33. Xu, C., Cui, G., Botuyan, M.V. & Mer, G. Structural basis for the recognition of methylated histone H3K36 by the Eaf3 subunit of histone deacetylase complex Rpd3S. Structure 16, 1740–1750 (2008).

    Article  CAS  Google Scholar 

  34. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.-M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748–751 (2006).

    Article  CAS  Google Scholar 

  35. Steiner, T., Kaiser, J.T., Marinkovic, S., Huber, R. & Wahl, M.C. Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. EMBO J. 21, 4641–4653 (2002).

    Article  CAS  Google Scholar 

  36. Burmann, B.M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010).

    Article  CAS  Google Scholar 

  37. Sokolowska, M., Czapinska, H. & Bochtler, M. Crystal structure of the bba-Me type II restriction endonuclease Hpy99I with target DNA. Nucleic Acids Res. 37, 3799–3810 (2009).

    Article  CAS  Google Scholar 

  38. Kaustov, L. et al. The conserved CPH domains of Cul7 and PARC are protein-protein interaction modules that bind the tetramerization domain of p53. J. Biol. Chem. 282, 11300–11307 (2007).

    Article  CAS  Google Scholar 

  39. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  CAS  Google Scholar 

  40. Charier, G. et al. The tudor tandem of 53BP1: A new structural motif involved in DNA and RG-rich peptide binding. Structure 12, 1551–1562 (2004).

    Article  CAS  Google Scholar 

  41. Botuyan, M.V. et al. Structural basis for the methylation state-specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  Google Scholar 

  42. Vedadi, M. et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci. USA 103, 15835–15840 (2006).

    Article  CAS  Google Scholar 

  43. Syson, K. et al. Three metal ions participate in the reaction catalyzed by T5 Flap endonuclease. J. Biol. Chem. 283, 28741–28746 (2008).

    Article  CAS  Google Scholar 

  44. Mueser, T.C., Nossal, N.G. & Hyde, C.C. Structure of bacteriophage T4 RNase H, a 5′ to 3′ RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell 85, 1101–1112 (1996).

    Article  CAS  Google Scholar 

  45. Hwang, K.Y., Baek, K., Kim, H.-Y. & Cho, Y. The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. Nat. Struct. Biol. 5, 707–713 (1998).

    Article  CAS  Google Scholar 

  46. Feng, M. et al. Roles of divalent metal ions in flap endonuclease-substrate interactions. Nat. Struct. Mol. Biol. 11, 450–456 (2004).

    Article  CAS  Google Scholar 

  47. Sakurai, S. et al. Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J. 24, 683–693 (2005).

    Article  CAS  Google Scholar 

  48. Doré, A.S. et al. Structure of an archael PCNA1-PCNA2–FEN1 complex: elucidating PCNA subunit and client enzyme specificity. Nucleic Acids Res. 34, 4515–4526 (2006).

    Article  Google Scholar 

  49. Jiao, X. et al. Identification of a quality-control mechanism for mRNA 5′-end capping. Nature 467, 608–611 (2010).

    Article  CAS  Google Scholar 

  50. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  51. Armon, A., Graur, D. & Ben-Tal, N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J. Mol. Biol. 307, 447–463 (2001).

    Article  CAS  Google Scholar 

  52. Doublié, S. et al. Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. FEBS Lett. 384, 219–221 (1996).

    Article  Google Scholar 

  53. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  54. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  55. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  56. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  57. Emsley, P. & Cowtan, K.D. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  58. Brünger, A.T. et al. Crystallography & NMR System: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  59. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  60. Takagaki, Y., Ryner, L.C. & Manley, J.L. Separation and characterization of a Poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 52, 731–742 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Whalen and S. Myers for setting up the X29A beamline at the National Synchrontron Light Source (NSLS). This research was supported in part by grants from the US National Institutes of Health to L.T. (GM090059 and GM077175) and J.L.M. (GM028983).

Author information

Authors and Affiliations

Authors

Contributions

J.H.C. and S.X. carried out protein expression, purification and crystallization experiments. J.H.C., S.X. and L.T. carried out crystallographic data collection, structure determination and refinement. J.H.C. carried out mutagenesis, nuclease assays, EMSA and thermal shift experiments. K.X. helped with the preparation of the nuclease substrate. J.L.M. designed experiments and analyzed data. All authors commented on the manuscript. L.T. designed experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Liang Tong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 3160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, J., Xiang, S., Xiang, K. et al. Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1. Nat Struct Mol Biol 18, 270–276 (2011). https://doi.org/10.1038/nsmb.1984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing