Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β2-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages

Abstract

β2-microglobulin (β2m) is the light chain of the type I major histocompatibility complex. It deposits as amyloid fibrils within joints during long-term hemodialysis treatment. Despite the devastating effects of dialysis-related amyloidosis, full understanding of how fibrils form from soluble β2m remains elusive. Here we show that β2m can oligomerize and fibrillize via three-dimensional domain swapping. Isolating a covalently bound, domain-swapped dimer from β2m oligomers on the pathway to fibrils, we were able to determine its crystal structure. The hinge loop that connects the swapped domain to the core domain includes the fibrillizing segment LSFSKD, whose atomic structure we also determined. The LSFSKD structure reveals a class 5 steric zipper, akin to other amyloid spines. The structures of the dimer and the zipper spine fit well into an atomic model for this fibrillar form of β2m, which assembles slowly under physiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of β2m oligomers.
Figure 2: Refolding and purification of β2m dimer.
Figure 3: Structure of the domain-swapped β2m dimer.
Figure 4: Systematic screening for amyloidogenic segments in the hinge loop (residues 52–65).
Figure 5: Crystal structure of segment LSFSKD and schematics for β2m fibrillation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Westermark, P. et al. Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 12, 1–4 (2005).

    Article  CAS  Google Scholar 

  2. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  3. Makin, O.S. & Serpell, L.C. Structures for amyloid fibrils. FEBS J. 272, 5950–5961 (2005).

    Article  CAS  Google Scholar 

  4. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  5. Sawaya, M.R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  Google Scholar 

  6. Tycko, R. Molecular structure of amyloid fibrils: insights from solid-state NMR. Q. Rev. Biophys. 39, 1–55 (2006).

    Article  CAS  Google Scholar 

  7. Margittai, M. & Langen, R. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q. Rev. Biophys. 41, 265–297 (2008).

    Article  CAS  Google Scholar 

  8. Glabe, C.G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. Aging 27, 570–575 (2006).

    Article  CAS  Google Scholar 

  9. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  Google Scholar 

  10. Wahlbom, M. et al. Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J. Biol. Chem. 282, 18318–18326 (2007).

    Article  CAS  Google Scholar 

  11. Guo, Z. & Eisenberg, D. Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Proc. Natl. Acad. Sci. USA 103, 8042–8047 (2006).

    Article  CAS  Google Scholar 

  12. Knaus, K.J. et al. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8, 770–774 (2001).

    Article  CAS  Google Scholar 

  13. Janowski, R. et al. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Struct. Biol. 8, 316–320 (2001).

    Article  CAS  Google Scholar 

  14. Gronenborn, A.M. Protein acrobatics in pairs—dimerization via domain swapping. Curr. Opin. Struct. Biol. 19, 39–49 (2009).

    Article  CAS  Google Scholar 

  15. Bennett, M.J., Sawaya, M.R. & Eisenberg, D. Deposition diseases and 3D domain swapping. Structure 14, 811–824 (2006).

    Article  CAS  Google Scholar 

  16. Becker, J.W. & Reeke, G.N. Jr. Three-dimensional structure of β2-microglobulin. Proc. Natl. Acad. Sci. USA 82, 4225–4229 (1985).

    Article  CAS  Google Scholar 

  17. Campistol, J.M. et al. Polymerization of normal and intact β2-microglobulin as the amyloidogenic protein in dialysis-amyloidosis. Kidney Int. 50, 1262–1267 (1996).

    Article  CAS  Google Scholar 

  18. McParland, V.J., Kalverda, A.P., Homans, S.W. & Radford, S.E. Structural properties of an amyloid precursor of β2-microglobulin. Nat. Struct. Biol. 9, 326–331 (2002).

    Article  CAS  Google Scholar 

  19. McParland, V.J. et al. Partially unfolded states of β2-microglobulin and amyloid formation in vitro. Biochemistry 39, 8735–8746 (2000).

    Article  CAS  Google Scholar 

  20. Eakin, C.M., Berman, A.J. & Miranker, A.D. A native to amyloidogenic transition regulated by a backbone trigger. Nat. Struct. Mol. Biol. 13, 202–208 (2006).

    Article  CAS  Google Scholar 

  21. Yamaguchi, K., Naiki, H. & Goto, Y. Mechanism by which the amyloid-like fibrils of a β2-microglobulin fragment are induced by fluorine-substituted alcohols. J. Mol. Biol. 363, 279–288 (2006).

    Article  CAS  Google Scholar 

  22. Myers, S.L. et al. A systematic study of the effect of physiological factors on β2-microglobulin amyloid formation at neutral pH. Biochemistry 45, 2311–2321 (2006).

    Article  CAS  Google Scholar 

  23. Heegaard, N.H. β2-microglobulin: from physiology to amyloidosis. Amyloid 16, 151–173 (2009).

    Article  CAS  Google Scholar 

  24. Jahn, T.R., Parker, M.J., Homans, S.W. & Radford, S.E. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat. Struct. Mol. Biol. 13, 195–201 (2006).

    Article  CAS  Google Scholar 

  25. Esposito, G. et al. Removal of the N-terminal hexapeptide from human β2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci. 9, 831–845 (2000).

    Article  CAS  Google Scholar 

  26. Platt, G.W., Routledge, K.E., Homans, S.W. & Radford, S.E. Fibril growth kinetics reveal a region of β2-microglobulin important for nucleation and elongation of aggregation. J. Mol. Biol. 378, 251–263 (2008).

    Article  CAS  Google Scholar 

  27. Iwata, K. et al. 3D structure of amyloid protofilaments of β2-microglobulin fragment probed by solid-state NMR. Proc. Natl. Acad. Sci. USA 103, 18119–18124 (2006).

    Article  CAS  Google Scholar 

  28. Ivanova, M.I., Sawaya, M.R., Gingery, M., Attinger, A. & Eisenberg, D. An amyloid-forming segment of β2-microglobulin suggests a molecular model for the fibril. Proc. Natl. Acad. Sci. USA 101, 10584–10589 (2004).

    Article  CAS  Google Scholar 

  29. Blaho, D.V. & Miranker, A.D. Delineating the conformational elements responsible for Cu2+-induced oligomerization of β2-microglobulin. Biochemistry 48, 6610–6617 (2009).

    Article  CAS  Google Scholar 

  30. Calabrese, M.F., Eakin, C.M., Wang, J.M. & Miranker, A.D. A regulatable switch mediates self-association in an immunoglobulin fold. Nat. Struct. Mol. Biol. 15, 965–971 (2008).

    Article  CAS  Google Scholar 

  31. Katou, H. et al. The role of disulfide bond in the amyloidogenic state of β2-microglobulin studied by heteronuclear NMR. Protein Sci. 11, 2218–2229 (2002).

    Article  CAS  Google Scholar 

  32. Smith, D.P. & Radford, S.E. Role of the single disulphide bond of β2-microglobulin in amyloidosis in vitro. Protein Sci. 10, 1775–1784 (2001).

    Article  CAS  Google Scholar 

  33. Eakin, C.M., Attenello, F.J., Morgan, C.J. & Miranker, A.D. Oligomeric assembly of native-like precursors precedes amyloid formation by β2-microglobulin. Biochemistry 43, 7808–7815 (2004).

    Article  CAS  Google Scholar 

  34. Trinh, C.H., Smith, D.P., Kalverda, A.P., Phillips, S.E. & Radford, S.E. Crystal structure of monomeric human β2-microglobulin reveals clues to its amyloidogenic properties. Proc. Natl. Acad. Sci. USA 99, 9771–9776 (2002).

    Article  CAS  Google Scholar 

  35. Khan, A.R., Baker, B.M., Ghosh, P., Biddison, W.E. & Wiley, D.C. The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J. Immunol. 164, 6398–6405 (2000).

    Article  CAS  Google Scholar 

  36. Rousseau, F., Schymkowitz, J.W., Wilkinson, H.R. & Itzhaki, L.S. Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues. Proc. Natl. Acad. Sci. USA 98, 5596–5601 (2001).

    Article  CAS  Google Scholar 

  37. Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M. & Eisenberg, D. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437, 266–269 (2005).

    Article  CAS  Google Scholar 

  38. Lee, S. & Eisenberg, D. Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nat. Struct. Biol. 10, 725–730 (2003).

    Article  CAS  Google Scholar 

  39. Biancalana, M., Makabe, K. & Koide, S. Minimalist design of water-soluble cross-β architecture. Proc. Natl. Acad. Sci. USA 107, 3469–3474 (2010).

    Article  CAS  Google Scholar 

  40. Jahn, T.R. et al. The common architecture of cross-β amyloid. J. Mol. Biol. 395, 717–727 (2010).

    Article  CAS  Google Scholar 

  41. Hogg, P.J. Disulfide bonds as switches for protein function. Trends Biochem. Sci. 28, 210–214 (2003).

    Article  CAS  Google Scholar 

  42. Nilsson, M. et al. Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C: use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J. Biol. Chem. 279, 24236–24245 (2004).

    Article  CAS  Google Scholar 

  43. Fändrich, M., Meinhardt, J. & Grigorieff, N. Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3, 89–93 (2009).

    Article  Google Scholar 

  44. Kodali, R. & Wetzel, R. Polymorphism in the intermediates and products of amyloid assembly. Curr. Opin. Struct. Biol. 17, 48–57 (2007).

    Article  CAS  Google Scholar 

  45. Goldsbury, C.S. et al. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119, 17–27 (1997).

    Article  CAS  Google Scholar 

  46. Paravastu, A.K., Leapman, R.D., Yau, W.M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer′s β-amyloid fibrils. Proc. Natl. Acad. Sci. USA 105, 18349–18354 (2008).

    Article  CAS  Google Scholar 

  47. Wiltzius, J.J. et al. Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol. 16, 973–978 (2009).

    Article  CAS  Google Scholar 

  48. Ladner, C.L. et al. Stacked sets of parallel, in-register β-strands of β2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling. J. Biol. Chem. 285, 17137–17147 (2010).

    Article  CAS  Google Scholar 

  49. Yamamoto, K. et al. Thiol compounds inhibit the formation of amyloid fibrils by β2-microglobulin at neutral pH. J. Mol. Biol. 376, 258–268 (2008).

    Article  CAS  Google Scholar 

  50. Chen, Y. & Dokholyan, N.V. A single disulfide bond differentiates aggregation pathways of β2-microglobulin. J. Mol. Biol. 354, 473–482 (2005).

    Article  CAS  Google Scholar 

  51. Stoppini, M. et al. Proteomics of β2-microglobulin amyloid fibrils. Biochim. Biophys. Acta 1753, 23–33 (2005).

    Article  CAS  Google Scholar 

  52. Bellotti, V. β2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur. J. Biochem. 258, 61–67 (1998).

    Article  CAS  Google Scholar 

  53. Platt, G.W. & Radford, S.E. Glimpses of the molecular mechanisms of β2-microglobulin fibril formation in vitro: aggregation on a complex energy landscape. FEBS Lett. 583, 2623–2629 (2009).

    Article  CAS  Google Scholar 

  54. Gorevic, P.D. et al. Beta-2 microglobulin is an amyloidogenic protein in man. J. Clin. Invest. 76, 2425–2429 (1985).

    Article  CAS  Google Scholar 

  55. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  56. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  57. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  58. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  59. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  60. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Northeastern Collaborative Access Team facility at the Advanced Photon Source at Argonne National Laboratory for beam time and collection assistance, and S. Radford, M. Bennett and Z. Guo for discussion. This work was supported by the US National Institutes of Health, the US Department of Energy Biological and Environmental Research program and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.L. designed the research, with advice from D.E., and carried out all the experiments; M.R.S. calculated and built the fibril models; C.L. wrote the paper; all authors discussed the results and revised the manuscript; D.E. supervised the work.

Corresponding author

Correspondence to David Eisenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 926 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Sawaya, M. & Eisenberg, D. β2-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nat Struct Mol Biol 18, 49–55 (2011). https://doi.org/10.1038/nsmb.1948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing