Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P

Abstract

Aminoacyl-tRNA synthetase (aaRS) paralogs with unknown functions exist in various species. We now report novel 'protein lysylation' by an Escherichia coli lysyl-tRNA synthetase paralog, GenX/PoxA/YjeA. X-ray crystallographic analysis shows that the structure of the GenX protein resembles that of a class II aaRS. Further in vitro studies reveal that it specifically aminoacylates EF-P with lysine. The shape of the protein substrate mimics that of the L-shaped tRNA, and its lysylation site corresponds to the tRNA 3′ end. Thus, we show how the aaRS architecture can be adapted to achieve aminoacylation of a specific protein. Moreover, in vivo analyses reveal that the translation elongation factor P (EF-P) lysylation by GenX is enhanced by YjeK (lysine 2,3-aminomutase paralog), which is encoded next to the EF-P gene, and might convert α-lysyl–EF-P to β-lysyl–EF-P. In vivo analyses indicate that the EF-P modification by GenX and YjeK is essential for cell survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GenX, a LysRS-like protein, binds a lysyl–AMP analog.
Figure 2: Structure of GenX.
Figure 3: Structure of the GenX•EF-P complex.
Figure 4: GenX post-translationally lysylates EF-P.
Figure 5: MS analyses of the modified EF-P.
Figure 6: YjeK promotes the lysyl modification of EF-P in vivo.
Figure 7: Post-translational modifications of eIF5A and EF-P.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Schimmel, P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56, 125–158 (1987).

    Article  CAS  Google Scholar 

  2. Ibba, M. & Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).

    Article  CAS  Google Scholar 

  3. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).

    Article  CAS  Google Scholar 

  4. Cusack, S., Berthet-Colominas, C., Hartlein, M., Nassar, N. & Leberman, R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347, 249–255 (1990).

    Article  CAS  Google Scholar 

  5. Roy, H., Becker, H.D., Reinbolt, J. & Kern, D. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism. Proc. Natl. Acad. Sci. USA 100, 9837–9842 (2003).

    Article  CAS  Google Scholar 

  6. Sissler, M. et al. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc. Natl. Acad. Sci. USA 96, 8985–8990 (1999).

    Article  CAS  Google Scholar 

  7. Artymiuk, P.J., Rice, D.W., Poirrette, A.R. & Willet, P. A tale of two synthetases. Nat. Struct. Biol. 1, 758 (1994).

    Article  CAS  Google Scholar 

  8. Salazar, J.C., Ambrogelly, A., Crain, P.F., McCloskey, J.A. & Söll, D. A truncated aminoacyl-tRNA synthetase modifies RNA. Proc. Natl. Acad. Sci. USA 101, 7536–7541 (2004).

    Article  CAS  Google Scholar 

  9. Dubois, D.Y. et al. An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. Proc. Natl. Acad. Sci. USA 101, 7530–7535 (2004).

    Article  CAS  Google Scholar 

  10. Ahel, I., Korencic, D., Ibba, M. & Söll, D. Trans-editing of mischarged tRNAs. Proc. Natl. Acad. Sci. USA 100, 15422–15427 (2003).

    Article  CAS  Google Scholar 

  11. An, S. & Musier-Forsyth, K. Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J. Biol. Chem. 41, 42359–42362 (2004).

    Article  Google Scholar 

  12. Kong, L., Fromant, M., Blanquet, S. & Plateau, P. Evidence for a new Escherichia coli protein resembling a lysyl-tRNA synthetase. Gene 108, 163–164 (1991).

    Article  CAS  Google Scholar 

  13. Kaniga, K., Compton, M.S., Curtiss, R. III & Sundaram, P. Molecular and functional characterization of Salmonella enterica serovar typhimurium poxA gene: effect on attenuation of virulence and protection. Infect. Immunol. 66, 5599–5606 (1998).

    CAS  Google Scholar 

  14. Peng, W.T., Banta, L.H., Charles, T.C. & Nester, E.W. The chvH locus of Agrobacterium encodes a homologue of an elongation factor involved in protein synthesis. J. Bacteriol. 183, 36–45 (2001).

    Article  CAS  Google Scholar 

  15. Bailly, M. & de Crécy-Lagard, V. Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol. Direct 5, 3 (2010).

    Article  Google Scholar 

  16. Kang, Y. et al. Systematic mutagenesis of the Escherichia coli genome. J. Bacteriol. 186, 4921–4930 (2004).

    Article  CAS  Google Scholar 

  17. Hanawa-Suetsugu, K. et al. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc. Natl. Acad. Sci. USA 101, 9595–9600 (2004).

    Article  Google Scholar 

  18. Blaha, G., Stanley, R.E. & Steitz, T.A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).

    Article  CAS  Google Scholar 

  19. Glick, B.R. & Ganoza, M.C. Identification of a soluble protein that stimulates peptide bond synthesis. Proc. Natl. Acad. Sci. USA 72, 4257–4260 (1975).

    Article  CAS  Google Scholar 

  20. Glick, B.R. & Ganoza, M.C. Peptide bond formation stimulated by protein synthesis factor EF-P depends on the aminoacyl moiety of the acceptor. Eur. J. Biochem. 97, 23–28 (1979).

    Article  CAS  Google Scholar 

  21. Ganoza, M.C., Kiel, M.C. & Aoki, H. Evolutionary conservation of reactions in translation. Microbiol. Mol. Biol. Rev. 66, 460–485 (2002).

    Article  CAS  Google Scholar 

  22. Eiler, S., Dock-Bregeon, A., Moulinier, L., Thierry, J.C. & Moras, D. Synthesis of aspartyl-tRNA(Asp) in Escherichia coli–a snapshot of the second step. EMBO J. 18, 6532–6541 (1999).

    Article  CAS  Google Scholar 

  23. Aoki, H. et al. Interaction of elongation factor P with the Escherichia coli ribosome. FEBS J. 275, 671–681 (2008).

    Article  CAS  Google Scholar 

  24. Saini, P., Eyler, D.E., Green, R. & Dever, T.E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).

    Article  CAS  Google Scholar 

  25. Sasaki, K., Abid, M.R. & Miyazaki, M. Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae . FEBS Lett. 384, 151–154 (1996).

    Article  CAS  Google Scholar 

  26. Park, M.H. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J. Biochem. 139, 161–169 (2006).

    Article  CAS  Google Scholar 

  27. Wolff, E.C., Kang, K.R., Kim, Y.S. & Park, M.H. Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids 33, 341–350 (2007).

    Article  CAS  Google Scholar 

  28. Smit-McBride, Z., Dever, T.E., Hershey, J.W. & Merrick, W.C. Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein. J. Biol. Chem. 264, 1578–1583 (1989).

    CAS  PubMed  Google Scholar 

  29. Bartig, D., Lemkemeier, K., Frank, J., Lottspeich, F. & Klink, F. The archaebacterial hypusine-containing protein. Structural features suggest common ancestry with eukaryotic translation initiation factor 5A. Eur. J. Biochem. 204, 751–758 (1992).

    Article  CAS  Google Scholar 

  30. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).

    Article  CAS  Google Scholar 

  31. Onesti, S., Miller, A.D. & Brick, P. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli . Structure 3, 163–176 (1995).

    Article  CAS  Google Scholar 

  32. Desogus, G., Todone, F., Brick, P. & Onesti, S. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction. Biochemistry 39, 8418–8425 (2000).

    Article  CAS  Google Scholar 

  33. Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 15, 6321–6334 (1996).

    Article  CAS  Google Scholar 

  34. Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structure of the ternary complex of T. thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 15, 2834–2842 (1996).

    Article  CAS  Google Scholar 

  35. Nozawa, K. et al. Pyrrolysyl-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457, 1163–1167 (2009).

    Article  CAS  Google Scholar 

  36. Watanabe, K. et al. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449, 867–871 (2008).

    Article  Google Scholar 

  37. Behshad, E. et al. Enantiomeric free radicals and enzymatic control of stereochemistry in a radical mechanism: the case of lysine 2,3-aminomutases. Biochemistry 45, 12639–12646 (2006).

    Article  CAS  Google Scholar 

  38. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. published online 21 February 2006, doi:10.1038/msb4100050.

  39. Rucker, R.B. & Wold, F. Cofactors in and as posttranslational protein modifications. FASEB J. 2, 2252–2261 (1988).

    Article  CAS  Google Scholar 

  40. Reche, P. & Perham, R.N. Structure and selectivity in post-translational modification: attaching the biotinyl–lysine and lipoyl–lysine swinging arms in multifunctional enzymes. EMBO J. 18, 2673–2682 (1999).

    Article  CAS  Google Scholar 

  41. Safro, M. & Mosyak, L. Structural similarities in the noncatalytic domains of phenylalanyl-tRNA and biotin synthetases. Protein Sci. 4, 2429–2432 (1995).

    Article  CAS  Google Scholar 

  42. Xu, A. & Chen, K.Y. Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with postsystematic evolution of ligands by exponential enrichment RNA. J. Biol. Chem. 276, 2555–2561 (2001).

    Article  CAS  Google Scholar 

  43. Wagner, S. & Klug, G. An archaeal protein with homology to the eukaryotic translation initiation factor 5A shows ribonucleolytic activity. J. Biol. Chem. 282, 13966–13976 (2007).

    Article  CAS  Google Scholar 

  44. Nakamura, Y. & Ito, K. Making sense of mimic in translation termination. Trends Biochem. Sci. 28, 99–105 (2003).

    Article  CAS  Google Scholar 

  45. Rawat, U.B. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87–90 (2003).

    Article  CAS  Google Scholar 

  46. Klaholz, B.P. et al. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90–94 (2003).

    Article  CAS  Google Scholar 

  47. Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266 (2005).

    Article  CAS  Google Scholar 

  48. Wilson, D.N. et al. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24, 251–260 (2005).

    Article  CAS  Google Scholar 

  49. Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat. Struct. Mol. Biol. 14, 733–737 (2007).

    Article  CAS  Google Scholar 

  50. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  51. Page, R.D. Visualizing phylogenetic trees using Treeview. Curr. Protoc. Bioimformatics Chapter 6, Unit 6.2 (2002).

  52. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  53. Terwilliger, T.C. & Berendzen, J. SOLVE and RESOLVE: automated structure solution and density modification. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (2002).

    Article  Google Scholar 

  54. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  56. Brünger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  57. Steiner, R.A., Lebedev, A.A. & Murshudov, G.N. Fisher's information in maximum-likelihood macromolecular crystallographic refinement. Acta Crystallogr. D Biol. Crystallogr. 59, 2114–2124 (2003).

    Article  Google Scholar 

  58. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  59. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of beamline BL41XU at SPring-8 as well as the staff of the BL-5A and AR-NW12 beamlines at the Photon Factory, S. Sekine, T. Ito, R. Fukunaga and T. Sengoku for assisting with the data collection and the structure determination as well as for discussions, T. Kobayashi (RIKEN) for helpful discussions, M. Asanuma, N. Takeuchi, M. Yamaguchi-Hirafuji, A. Urushibata, R. Akasaka, T. Terada, M. Shirouzu and H. Hirota for MS, K. Takada (RIKEN) and C. Naoe (RIKEN) for the preparation of S30 extracts, ribosomes, tRNAfMet, methionyl-tRNA synthetase and methionyl–tRNAfMet formyltransferase, R. Nakajima (RIKEN), M. Aoki (RIKEN), J. Adachi (RIKEN), N. Ohsawa (RIKEN), K. Katsura (RIKEN), T. Terada (RIKEN) and M. Shirouzu (RIKEN) for the E. coli cell-free protein synthesis system, A. Arakawa, T. Kasai and T. Kigawa for assisting with the ITC analysis, K. Yutani for the DSC analysis and A. Ishii and T. Nakayama for clerical assistance. We are grateful to the National BioResource Project (National Institute of Genetics, Japan) for providing the strains from the Keio collection. This work was supported in part by Grants-in-Aid for Scientific Research in Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Targeted Proteins Research Program and the RIKEN Structural Genomics/Proteomics Initiative (RSGI) in the National Project on Protein Structural and Functional Analyses, Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

T.S. performed the crystallographic experiments and the structural analysis; T.Y. performed the biochemical experiments and the structural analysis; R.I. assisted with the structural analysis; T.S., T.Y., R.I., C.T. and S.Y. interpreted the experiments and wrote the manuscript; T.Y. and S.Y. designed the studies.

Corresponding author

Correspondence to Shigeyuki Yokoyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 2709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanagisawa, T., Sumida, T., Ishii, R. et al. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol Biol 17, 1136–1143 (2010). https://doi.org/10.1038/nsmb.1889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing