Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice

Abstract

DNA-binding proteins survey genomes for targets using facilitated diffusion, which typically includes a one-dimensional (1D) scanning component for sampling local regions. Eukaryotic proteins must accomplish this task while navigating through chromatin. Yet it is unknown whether nucleosomes disrupt 1D scanning or eukaryotic DNA-binding factors can circumnavigate nucleosomes without falling off DNA. Here we use single-molecule microscopy in conjunction with nanofabricated curtains of DNA to show that the postreplicative mismatch repair protein complex Mlh1–Pms1 diffuses in 1D along DNA via a hopping/stepping mechanism and readily bypasses nucleosomes. This is the first experimental demonstration that a passively diffusing protein can traverse stationary obstacles. In contrast, Msh2–Msh6, a mismatch repair protein complex that slides while maintaining continuous contact with DNA, experiences a boundary upon encountering nucleosomes. These differences reveal important mechanistic constraints affecting intranuclear trafficking of DNA-binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanofabricated racks of DNA for visualizing 1D diffusion of Mlh1–Pms1.
Figure 2: DNA-binding activity of fluorescently tagged Mlh1–Pms1.
Figure 3: Quantitative analysis of Mlh1–Pms1 diffusion.
Figure 4: End-dependent dissociation of Mlh1–Pms1 from DNA.
Figure 5: Diffusion of Mlh1–Pms1 and Msh2–Msh6 along nucleosome-bound DNA.

Similar content being viewed by others

References

  1. von Hippel, P.H. & Berg, O. Facilitated target location in biological systems. J. Biol. Chem. 264, 675–678 (1989).

    CAS  PubMed  Google Scholar 

  2. Elf, J., Li, G.-W. & Xie, X. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    Article  CAS  Google Scholar 

  3. Hager, G.L., McNally, J. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    Article  CAS  Google Scholar 

  4. Li, G.-W., Berg, O. & Elf, J. Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nat. Phys. 5, 294–297 (2009).

    Article  CAS  Google Scholar 

  5. Blainey, P.C., van Oijen, A.M., Banerjee, A., Verdine, G.L. & Xie, X.S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl. Acad. Sci. USA 103, 5752–5757 (2006).

    Article  CAS  Google Scholar 

  6. Gorman, J. & Greene, E.C. Visualizing one-dimensional diffusion of proteins along DNA. Nat. Struct. Mol. Biol. 15, 768–774 (2008).

    Article  CAS  Google Scholar 

  7. Gorski, S.A., Dundr, M. & Misteli, T. The road much traveled: trafficking in the cell nucleus. Curr. Opin. Cell Biol. 18, 284–290 (2006).

    Article  CAS  Google Scholar 

  8. Kampmann, M. Facilitated diffusion in chromatin lattices: mechanistic diversity and regulatory potential. Mol. Microbiol. 57, 889–899 (2005).

    Article  CAS  Google Scholar 

  9. Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M. & Bustamante, C. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325, 626–628 (2009).

    Article  CAS  Google Scholar 

  10. Studitsky, V.M., Clark, D. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 (1995).

    Article  CAS  Google Scholar 

  11. Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335–346 (2006).

    Article  CAS  Google Scholar 

  12. Modrich, P. Mechanisms in eukaryotic mismatch repair. J. Biol. Chem. 281, 30305–30309 (2006).

    Article  CAS  Google Scholar 

  13. Kunkel, T.A. & Erie, D.A. DNA mismatch repair. Annu. Rev. Biochem. 74, 681–710 (2005).

    Article  CAS  Google Scholar 

  14. Gorman, J. et al. Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol. Cell 28, 359–370 (2007).

    Article  CAS  Google Scholar 

  15. Gorman, J., Fazio, T., Wang, F., Wind, S. & Greene, E. Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging. Langmuir 26, 1372–1379 (2010).

    Article  CAS  Google Scholar 

  16. Hall, M.C., Wang, H., Erie, D.A. & Kunkel, T.A. High affinity cooperative DNA binding by the yeast Mlh1-Pms1 heterodimer. J. Mol. Biol. 312, 637–647 (2001).

    Article  CAS  Google Scholar 

  17. Sacho, E.J., Kadyrov, F.A., Modrich, P., Kunkel, T.A. & Erie, D.A. Direct visualization of asymmetric adenine-nucleotide-induced conformational changes in MutL α. Mol. Cell 29, 112–121 (2008).

    Article  CAS  Google Scholar 

  18. Guarné, A., Junop, M. & Yang, W. Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. EMBO J. 20, 5521–5531 (2001).

    Article  Google Scholar 

  19. Guarné, A. et al. Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J. 23, 4134–4145 (2004).

    Article  Google Scholar 

  20. Kosinski, J., Steindorf, I., Bujnicki, J., Giron-Monzon, L. & Friedhoff, P. Analysis of the quaternary structure of the MutL C-terminal domain. J. Mol. Biol. 351, 895–909 (2005).

    Article  CAS  Google Scholar 

  21. Komazin-Meredith, G., Mirchev, R., Golan, D., van Oijen, A. & Coen, D. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion. Proc. Natl. Acad. Sci. USA 105, 10721–10726 (2008).

    Article  CAS  Google Scholar 

  22. Hall, M.C. et al. DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair. Nucleic Acids Res. 31, 2025–2034 (2003).

    Article  CAS  Google Scholar 

  23. Visnapuu, M.-L. & Greene, E. Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nat. Struct. Mol. Biol. 16, 1056–1062 (2009).

    Article  CAS  Google Scholar 

  24. Warren, J.J. et al. Structure of the human MutSα DNA lesion recognition complex. Mol. Cell 26, 579–592 (2007).

    Article  CAS  Google Scholar 

  25. Li, F., Tian, L., Gu, L. & Li, G. Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J. Biol. Chem. 284, 33056–33061 (2009).

    Article  CAS  Google Scholar 

  26. Gradia, S. et al. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3, 255–261 (1999).

    Article  CAS  Google Scholar 

  27. Pluciennik, A. & Modrich, P. Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. Proc. Natl. Acad. Sci. USA 104, 12709–12713 (2007).

    Article  CAS  Google Scholar 

  28. Mendillo, M.L., Mazur, D.J. & Kolodner, R.D. Analysis of the interaction between the Saccharomyces cerevisiae MSH2–MSH6 and MLH1–PMS1 complexes with DNA using a reversible DNA end-blocking system. J. Biol. Chem. 280, 22245–22257 (2005).

    Article  CAS  Google Scholar 

  29. Berg, O.G., Winter, R. & von Hippel, P. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

    Article  CAS  Google Scholar 

  30. Winter, R.B., Berg, O. & von Hippel, P. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor–operator interaction: kinetic measurements and conclusions. Biochemistry 20, 6961–6977 (1981).

    Article  CAS  Google Scholar 

  31. Winter, R.B. & von Hippel, P. Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor–operator interaction: equilibrium measurements. Biochemistry 20, 6948–6960 (1981).

    Article  CAS  Google Scholar 

  32. Riggs, A.D., Bourgeois, S. & Cohn, M. The lac repressor-operator interaction. 3. Kinetic studies. J. Mol. Biol. 53, 401–417 (1970).

    Article  CAS  Google Scholar 

  33. Doucleff, M. & Clore, G. Global jumping and domain-specific intersegment transfer between DNA cognate sites of the multidomain transcription factor Oct-1. Proc. Natl. Acad. Sci. USA 105, 13871–13876 (2008).

    Article  CAS  Google Scholar 

  34. Iwahara, J. & Clore, G. Direct observation of enhanced translocation of a homeodomain between DNA cognate sites by NMR exchange spectroscopy. J. Am. Chem. Soc. 128, 404–405 (2006).

    Article  CAS  Google Scholar 

  35. Iwahara, J., Zweckstetter, M. & Clore, G. NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA. Proc. Natl. Acad. Sci. USA 103, 15062–15067 (2006).

    Article  CAS  Google Scholar 

  36. Roy, R., Kozlov, A., Lohman, T. & Ha, T. SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 461, 1092–1097 (2009).

    Article  CAS  Google Scholar 

  37. Liu, S., Abbondanzieri, E., Rausch, J., Le Grice, S. & Zhuang, X. Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 322, 1092–1097 (2008).

    Article  CAS  Google Scholar 

  38. Tafvizi, A. et al. Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 95, L01–L03 (2008).

    Article  CAS  Google Scholar 

  39. Halford, S.E. & Szczelkun, M. How to get from A to B: strategies for analysing protein motion on DNA. Eur. Biophys. J. 31, 257–267 (2002).

    Article  CAS  Google Scholar 

  40. Mirny, L. et al. How a protein searches for its site on DNA: the mechanism of facilitated diffusion. J. Phys. A: Math. Theor. 42, 434013 (2009).

    Article  Google Scholar 

  41. Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721–733 (2007).

    Article  CAS  Google Scholar 

  42. Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65–73 (1996).

    Article  CAS  Google Scholar 

  43. Kolodner, R.D., Mendillo, M.L. & Putnam, C.D. Coupling distant sites in DNA during mismatch repair. Proc. Natl. Acad. Sci. USA 104, 12953–12954 (2007).

    Article  CAS  Google Scholar 

  44. Bagchi, B., Blainey, P.C. & Xie, X.S. Diffusion constant of a nonspecifically bound protein undergoing curvilinear motion along DNA. J. Phys. Chem. B 112, 6282–6284 (2008).

    Article  CAS  Google Scholar 

  45. Luger, K., Mäder, A., Richmond, R., Sargent, D. & Richmond, T. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  46. Pathak, S., Davidson, M. & Silva, G. Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett. 7, 1839–1845 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories for carefully reading the manuscript and providing suggestions throughout this study. This work was supported by the Howard Hughes Medical Institute, by a US National Science Foundation Presidential Early Career Award for Scientists and Engineers, by US National Institutes of Health (NIH) grant GM082848 to E.C.G. and by NIH grant GM53085 to E.A. J.G. is supported by an NIH training grant for Cellular and Molecular Foundations of Biomedical Sciences (T32GM00879807). A.J.P. was supported by a State University of New York fellowship. This work was partially supported by the Initiatives in Science and Engineering program through Columbia University, the Nanoscale Science and Engineering Initiative of the National Science Foundation under US National Science Foundation Award Number CHE-0641523 and by the New York State Office of Science, Technology, and Academic Research.

Author information

Authors and Affiliations

Authors

Contributions

J.G. designed the TIRFM experiments and collected and analyzed the single-molecule data; A.J.P. designed and engineered all constructs, expressed and purified the proteins, did all ensemble-level characterization and conducted the immunoprecipitation experiments; M.-L.V. made and characterized all chromatin substrates; J.G., A.J.P., M.-L.V., E.A. and E.C.G. discussed the data and cowrote the paper.

Corresponding author

Correspondence to Eric C Greene.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1, Supplementary Discussion and Supplementary Methods (PDF 3298 kb)

Supplementary Video 1

Double-tethered DNA curtains. (MOV 811 kb)

Supplementary Video 2

Double-tethered DNA curtains with diffusing Mlh1-Pms1. (MOV 16938 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorman, J., Plys, A., Visnapuu, ML. et al. Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 17, 932–938 (2010). https://doi.org/10.1038/nsmb.1858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing