Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Following the intersubunit conformation of the ribosome during translation in real time

Abstract

We report the direct observation of conformational rearrangements of the ribosome during multiple rounds of elongation. Using single-molecule fluorescence resonance energy transfer, we monitored the intersubunit conformation of the ribosome in real time as it proceeds from codon to codon. During each elongation cycle, the ribosome unlocks upon peptide bond formation, then reverts to the locked state upon translocation onto the next codon. Our data reveal both the specific and cumulative effects of antibiotics on individual steps of translation and uncover the processivity of the ribosome as it elongates. Our approach interrogates the precise molecular events occurring at each codon of the mRNA within the full context of ongoing translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intersubunit FRET reports on the elongation cycle at each codon during translation.
Figure 2: The number of complete FRET cycles is controlled by coding length.
Figure 3: Each FRET cycle reports on one round of elongation at a distinct codon.
Figure 4: Erythromycin stalls single translating ribosomes by blocking the nascent chain.
Figure 5: The precise mechanisms and cumulative effects of ribosome-targeting antibiotics observed at codon resolution.
Figure 6: Monitoring the elongation cycle during multiple rounds of translation reveals increased translocation rates beyond initial codons.
Figure 7: A general model for ribosome dynamics and function.

Similar content being viewed by others

References

  1. Green, R. & Noller, H.F. Ribosomes and translation. Annu. Rev. Biochem. 66, 679–716 (1997).

    Article  CAS  Google Scholar 

  2. Wintermeyer, W. et al. Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. Biochem. Soc. Trans. 32, 733–737 (2004).

    Article  CAS  Google Scholar 

  3. Korostelev, A., Ermolenko, D.N. & Noller, H.F. Structural dynamics of the ribosome. Curr. Opin. Chem. Biol. 12, 674–683 (2008).

    Article  CAS  Google Scholar 

  4. Zaher, H.S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762 (2009).

    Article  CAS  Google Scholar 

  5. Spirin, A.S. A model of the functioning ribosome: locking and unlocking of the ribosome subparticles. Cold Spring Harb. Symp. Quant. Biol. 34, 197–207 (1969).

    Article  CAS  Google Scholar 

  6. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  Google Scholar 

  7. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  8. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  9. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    Article  CAS  Google Scholar 

  10. Julian, P. et al. Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc. Natl. Acad. Sci. USA 105, 16924–16927 (2008).

    Article  CAS  Google Scholar 

  11. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005).

    Article  CAS  Google Scholar 

  12. Zhang, W., Dunkle, J.A. & Cate, J.H. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017 (2009).

    Article  CAS  Google Scholar 

  13. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  Google Scholar 

  14. Blanchard, S.C., Kim, H.D., Gonzalez, R.L. Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  Google Scholar 

  15. Kim, H.D., Puglisi, J.D. & Chu, S. Fluctuations of transfer RNAs between classical and hybrid states. Biophys. J. 93, 3575–3582 (2007).

    Article  CAS  Google Scholar 

  16. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  Google Scholar 

  17. Cornish, P.V., Ermolenko, D.N., Noller, H.F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  Google Scholar 

  18. Fei, J., Kosuri, P., MacDougall, D.D. & Gonzalez, R.L. Jr. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).

    Article  CAS  Google Scholar 

  19. Fei, J. et al. Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl. Acad. Sci. USA 106, 15702–15707 (2009).

    Article  CAS  Google Scholar 

  20. Cornish, P.V. et al. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl. Acad. Sci. USA 106, 2571–2576 (2009).

    Article  CAS  Google Scholar 

  21. Wen, J.D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008).

    Article  CAS  Google Scholar 

  22. Dorywalska, M. et al. Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res. 33, 182–189 (2005).

    Article  CAS  Google Scholar 

  23. Marshall, R.A., Dorywalska, M. & Puglisi, J.D. Irreversible chemical steps control intersubunit dynamics during translation. Proc. Natl. Acad. Sci. USA 105, 15364–15369 (2008).

    Article  CAS  Google Scholar 

  24. Aitken, C.E., Marshall, R.A. & Puglisi, J.D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  CAS  Google Scholar 

  25. Marshall, R.A., Aitken, C.E. & Puglisi, J.D. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol. Cell 35, 37–47 (2009).

    Article  CAS  Google Scholar 

  26. Liang, S.T., Xu, Y.C., Dennis, P. & Bremer, H. mRNA composition and control of bacterial gene expression. J. Bacteriol. 182, 3037–3044 (2000).

    Article  CAS  Google Scholar 

  27. Pape, T., Wintermeyer, W. & Rodnina, M.V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17, 7490–7497 (1998).

    Article  CAS  Google Scholar 

  28. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523 (2003).

    Article  CAS  Google Scholar 

  29. Pan, D., Kirillov, S.V. & Cooperman, B.S. Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25, 519–529 (2007).

    Article  CAS  Google Scholar 

  30. Studer, S.M., Feinberg, J.S. & Joseph, S. Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome. J. Mol. Biol. 327, 369–381 (2003).

    Article  CAS  Google Scholar 

  31. Bilgin, N., Claesens, F., Pahverk, H. & Ehrenberg, M. Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J. Mol. Biol. 224, 1011–1027 (1992).

    Article  CAS  Google Scholar 

  32. Johansson, M., Bouakaz, E., Lovmar, M. & Ehrenberg, M. The kinetics of ribosomal peptidyl transfer revisited. Mol. Cell 30, 589–598 (2008).

    Article  CAS  Google Scholar 

  33. Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).

    Article  CAS  Google Scholar 

  34. Vanzi, F., Takagi, Y., Shuman, H., Cooperman, B.S. & Goldman, Y.E. Mechanical studies of single ribosome/mRNA complexes. Biophys. J. 89, 1909–1919 (2005).

    Article  CAS  Google Scholar 

  35. Schlunzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).

    Article  CAS  Google Scholar 

  36. Tenson, T., Lovmar, M. & Ehrenberg, M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 330, 1005–1014 (2003).

    Article  CAS  Google Scholar 

  37. Vazquez, D. Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. Biophys. Acta 114, 289–295 (1966).

    Article  CAS  Google Scholar 

  38. Karahalios, P. et al. On the mechanism of action of 9-O-arylalkyloxime derivatives of 6-O-mycaminosyltylonolide, a new class of 16-membered macrolide antibiotics. Mol. Pharmacol. 70, 1271–1280 (2006).

    Article  CAS  Google Scholar 

  39. Bodley, J.W., Zieve, F.J. & Lin, L. Studies on translocation. IV. The hydrolysis of a single round of guanosine triphosphate in the presence of fusidic acid. J. Biol. Chem. 245, 5662–5667 (1970).

    CAS  PubMed  Google Scholar 

  40. Brink, M.F., Brink, G., Verbeet, M.P. & de Boer, H.A. Spectinomycin interacts specifically with the residues G1064 and C1192 in 16S rRNA, thereby potentially freezing this molecule into an inactive conformation. Nucleic Acids Res. 22, 325–331 (1994).

    Article  CAS  Google Scholar 

  41. Borovinskaya, M.A., Shoji, S., Holton, J.M., Fredrick, K. & Cate, J.H. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem. Biol. 2, 545–552 (2007).

    Article  CAS  Google Scholar 

  42. Liou, Y.F. & Tanaka, N. Dual actions of viomycin on the ribosomal functions. Biochem. Biophys. Res. Commun. 71, 477–483 (1976).

    Article  CAS  Google Scholar 

  43. Shoji, S., Walker, S.E. & Fredrick, K. Reverse translocation of tRNA in the ribosome. Mol. Cell 24, 931–942 (2006).

    Article  CAS  Google Scholar 

  44. Ermolenko, D.N. et al. The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat. Struct. Mol. Biol. 14, 493–497 (2007).

    Article  CAS  Google Scholar 

  45. Feldman, M.B., Terry, D.S., Altman, R.B. & Blanchard, S.C. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat. Chem. Biol. 6, 54–62 (2010).

    Article  CAS  Google Scholar 

  46. Stanley, R.E., Blaha, G., Grodzicki, R.L., Strickler, M.D. & Steitz, T.A. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol. 17, 289–293 (2010).

    Article  CAS  Google Scholar 

  47. Blaha, G., Stanley, R.E. & Steitz, T.A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).

    Article  CAS  Google Scholar 

  48. Diaconu, M. et al. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121, 991–1004 (2005).

    Article  CAS  Google Scholar 

  49. Uemura, S. et al. Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature 446, 454–457 (2007).

    Article  CAS  Google Scholar 

  50. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants to J.D.P. from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

C.E.A. performed experiments and data analysis. C.E.A. and J.D.P. discussed results and wrote the manuscript.

Corresponding author

Correspondence to Joseph D Puglisi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitken, C., Puglisi, J. Following the intersubunit conformation of the ribosome during translation in real time. Nat Struct Mol Biol 17, 793–800 (2010). https://doi.org/10.1038/nsmb.1828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing