Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I

Abstract

RIG-I is a cytosolic helicase that senses 5′-ppp RNA contained in negative-strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies established that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5′-ppp RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD bound to both blunt ends of a self-complementary 5′-ppp dsRNA 12-mer, with interactions involving 5′-pp clearly visible in the complex. The structure, supported by mutation studies, defines how a lysine-rich basic cleft within the RIG-I CTD sequesters the observable 5′-pp of the bound RNA, with a stacked phenylalanine capping the terminal base pair. Key intermolecular interactions observed in the crystalline state are retained in the complex of 5′-ppp dsRNA 24-mer and full-length RIG-I under in vivo conditions, as evaluated from the impact of binding pocket RIG-I mutations and 2′-OCH3 RNA modifications on the interferon response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of RIG-I family of pattern-recognition receptors and ITC studies of the binding of RIG-I CTD domain to RNA as a function of 5′-end phosphorylation and duplex/strand status.
Figure 2: Details of the crystal structure of the RIG-I CTD bound to blunt-end 5′-pp dsRNA 12-mer.
Figure 3: Role of 5′-phosphorylated ends in the crystal structure of the RIG-I CTD bound to blunt-end 5′-pp dsRNA 12-mer and comparison of the electrostatics of the binding surfaces of RIG-I, MDA5 and LGP2 CTDs for 5′-ppp dsRNA.
Figure 4: ITC and electrophoretic mobility shift studies of the binding of blunt-end 5′-ppp dsRNA 12-mer to wild-type and mutants of RIG-I CTD.
Figure 5: In vivo analysis of the impact of point mutants on the biological activity of RIG-I.
Figure 6: In vivo analysis of 5′-ppp RNA strand 2′-OCH3 substituent effects.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  Google Scholar 

  2. Yoneyama, M. & Fujita, T. Recognition of viral nucleic acids in innate immunity. Rev. Med. Virol. 20, 4–22 (2010).

    Article  CAS  Google Scholar 

  3. Wilkins, C. & Gale, M. Jr. Recognition of viruses by cytoplasmic sensors. Curr. Opin. Immunol. 22, 41–47 (2010).

    Article  CAS  Google Scholar 

  4. Rehwinkel, J. & Reis e Sousa, C. RIGorous detection: exposing virus through RNA sensing. Science 327, 284–286 (2010).

    Article  CAS  Google Scholar 

  5. Coch, C. et al. Higher activation of TLR9 in plasmacytoid dendritic cells by microbial DNA compared with self-DNA based on CpG-specific recognition of phosphodiester DNA. J. Leukoc. Biol. 86, 663–670 (2009).

    Article  CAS  Google Scholar 

  6. Poeck, H. et al. 5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat. Med. 14, 1256–1263 (2008).

    Article  CAS  Google Scholar 

  7. Barchet, W., Wimmenauer, V., Schlee, M. & Hartmann, G. Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr. Opin. Immunol. 20, 389–395 (2008).

    Article  CAS  Google Scholar 

  8. Barral, P.M. et al. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity. Pharmacol. Ther. 124, 219–234 (2009).

    Article  CAS  Google Scholar 

  9. Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).

    Article  CAS  Google Scholar 

  10. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    Article  CAS  Google Scholar 

  11. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in dsRNA-induced innate antiviral response. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  12. Besch, R. et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest. 119, 2399–2411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Poeck, H. et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 β production. Nat. Immunol. 11, 63–69 (2010).

    Article  CAS  Google Scholar 

  14. Hornung, V. et al. 5′-triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  Google Scholar 

  15. Pichlmair, A. et al. RIG-I mediated antiviral responds to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  Google Scholar 

  16. Schmidt, A. et al. 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. USA 106, 12067–12072 (2009).

    Article  CAS  Google Scholar 

  17. Schlee, M. et al. Recognition of the 5′-phosphate by RIG-I helicase requires short blunt dsRNA as contained in the panhandle of negative-strand virus. Immunity 31, 25–34 (2009).

    Article  CAS  Google Scholar 

  18. Ablasser, A. et al. RIG-I dependent sensing of poly(dA:dT) through the induction of an RNA pol III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    Article  CAS  Google Scholar 

  19. Chiu, Y.H. et al. RNA pol III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  Google Scholar 

  20. Myong, S. et al. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on dsRNA. Science 323, 1070–1074 (2009).

    Article  CAS  Google Scholar 

  21. Takahasi, K. et al. Non-self RNA-sensing mechanism of RNA-I helicase and activation of antiviral immune responses. Mol. Cell 29, 428–440 (2008).

    Article  CAS  Google Scholar 

  22. Cui, S. et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell 29, 169–179 (2008).

    Article  CAS  Google Scholar 

  23. Ma, J.-B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article  CAS  Google Scholar 

  24. Ma, J.B. et al. Structural basis for 5′-end-specific recognition of the guide RNA strand by the A. fugidus PIWI protein. Nature 434, 666–670 (2005).

    Article  CAS  Google Scholar 

  25. Teplova, M. et al. Structural basis for recognition and sequestration of UUUOH 3′-terminii of nascent mRNA polymerase III transcripts by La autoantigen. Mol. Cell 21, 75–85 (2006).

    Article  CAS  Google Scholar 

  26. Li, X. et al. The RIG-I-like receptor LGP2 recognizes the termini of dsRNA. J. Biol. Chem. 284, 13881–13891 (2009).

    Article  CAS  Google Scholar 

  27. Leung, D.W. et al. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat. Struct. Mol. Biol. 17, 165–172 (2010).

    Article  CAS  Google Scholar 

  28. Liu, L. et al. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320, 379–381 (2008).

    Article  CAS  Google Scholar 

  29. Utyanskaya, E.Z., Lidskii, B.V., Neihaus, M.G. & Shilov, A.E. Mathematical modeling of kinetics of adenosine 5′-triphosphate hydrolysis catalyzed by Zn2+ ion in the pH range 7.1 to 7.4. J. Inorg. Biochem. 81, 239–258 (2000).

    Article  CAS  Google Scholar 

  30. Ludwig, J. & Eckstein, F. Rapid and efficient synthesis of nucleoside 5′-O-(1-thiotriphosphates), 5′-triphosphates and 2′,3′-cyclophosphorothioates using 2-chloro-4h-1,3,2-benzodioxaphosphorin-4-one. J. Org. Chem. 54, 631–635 (1989).

    Article  CAS  Google Scholar 

  31. Anderson, A.C. et al. HPLC purification of RNA for crystallography and NMR. RNA 2, 110–117 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  33. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  34. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  35. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  36. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of X-29 beamline at Brookhaven National Laboratory for their assistance during synchrotron data collection, D. Shimanshu and Y. Tian for their assistance in synchrotron data collection, M. Aigner for chemical synthesis of 5′-ppp RNAs undertaken in Innsbruck and G. Wardle for MS analysis in the RU proteomics facility to quality control the 5′-ppp RNAs. D.J.P. was supported by funds from the Abby Rockefeller Mauze Trust and the Maloris Foundation. R.M. was supported by the Austrian Science fund FWF (I317). G.H. was supported by grants from the Bundesministerium für Bildung und Forschung Biofuture and GoBio and from the Deutsche Forschungsgemeinschaft (SFB704, SFB670, SFB832 and KFO177).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. expressed the RIG-I CTD domain, with G.S. assisting with protein expression and purification; Y.W. crystallized and solved the structure of the complex; J.L. was responsible for chemical synthesis of palindromic and non-palindromic 5′-ppp RNAs and 2′-O-methyl-modified 5′-ppp RNAs; C.S., M.G. and M.S. were responsible for the in vivo functional assays, including expression of full-length RIG-I mutants; H.L. and Y.W. were responsible for ITC titration assays; S.J. was responsible for gel-shift assays and prepared the plasmids for mutant RIG-I CTD expression; R.M. provided earlier batches of short 5′-ppp RNAs for crystallization trials; the paper was written by D.J.P., G.H. and T.T. with the assistance of the other authors.

Corresponding authors

Correspondence to Thomas Tuschl, Gunther Hartmann or Dinshaw J Patel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–4 (PDF 592 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ludwig, J., Schuberth, C. et al. Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 17, 781–787 (2010). https://doi.org/10.1038/nsmb.1863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing