Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation

Abstract

The transition from transcription initiation to elongation at the HIV-1 promoter is controlled by Tat, which recruits P-TEFb to TAR RNA to phosphorylate RNA polymerase II. It has long been unclear why the HIV-1 promoter is incompetent for elongation. We report that P-TEFb is recruited to the promoter in a catalytically inactive state bound to the inhibitory 7SK small nuclear ribonucleoprotein (snRNP), thereby preventing elongation. It also has long been believed that TAR functions to recruit Tat to the promoter, but we find that Tat is recruited to the DNA template before TAR is synthesized. We propose that TAR binds Tat and P-TEFb as it emerges on the nascent transcript, competitively displacing the inhibitory 7SK snRNP and activating the P-TEFb kinase. Recruitment of an inhibitory snRNP complex at an early stage in the transcription cycle provides a new paradigm for controlling gene expression with a noncoding RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inactive P-TEFb assembles into Pol II complexes, and Tat activates its catalytic activity.
Figure 2: Distribution of Tat and cofactors at the HIV-1 promoter and dependence on TAR.
Figure 3: Tat assembles with the 7SK snRNP in vivo.
Figure 4: 7SK snRNP and Tat recruitment to HIV-1 PICs are Sp1 dependent.
Figure 5: Proposed model of HIV-1 transcription activation by Tat.

Similar content being viewed by others

References

  1. Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    Article  CAS  Google Scholar 

  2. Feinberg, M.B., Baltimore, D. & Frankel, A.D. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc. Natl. Acad. Sci. USA 88, 4045–4049 (1991).

    Article  CAS  Google Scholar 

  3. Laspia, M.F., Rice, A.P. & Mathews, M.B. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59, 283–292 (1989).

    Article  CAS  Google Scholar 

  4. Garber, M.E. et al. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 12, 3512–3527 (1998).

    Article  CAS  Google Scholar 

  5. Raha, T., Cheng, S.W. & Green, M.R. HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol. 3, e44 (2005).

    Article  Google Scholar 

  6. Zhang, Z., Klatt, A., Gilmour, D.S. & Henderson, A.J. Negative elongation factor NELF represses human immunodeficiency virus transcription by pausing the RNA polymerase II complex. J. Biol. Chem. 282, 16981–16988 (2007).

    Article  CAS  Google Scholar 

  7. Core, L.J. & Lis, J.T. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 319, 1791–1792 (2008).

    Article  CAS  Google Scholar 

  8. Peterlin, B.M. & Price, D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    Article  CAS  Google Scholar 

  9. Wei, P., Garber, M.E., Fang, S.M., Fischer, W.H. & Jones, K.A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451–462 (1998).

    Article  CAS  Google Scholar 

  10. Zhou, Q. & Yik, J.H. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol. Mol. Biol. Rev. 70, 646–659 (2006).

    Article  CAS  Google Scholar 

  11. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  Google Scholar 

  12. Kim, Y.K., Bourgeois, C.F., Isel, C., Churcher, M.J. & Karn, J. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol. Cell. Biol. 22, 4622–4637 (2002).

    Article  CAS  Google Scholar 

  13. Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004).

    Article  CAS  Google Scholar 

  14. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  Google Scholar 

  15. Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612 (2006).

    Article  CAS  Google Scholar 

  16. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    Article  CAS  Google Scholar 

  17. Jang, M.K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  Google Scholar 

  18. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  Google Scholar 

  19. Yik, J.H. et al. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 12, 971–982 (2003).

    Article  CAS  Google Scholar 

  20. Jeronimo, C. et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol. Cell 27, 262–274 (2007).

    Article  CAS  Google Scholar 

  21. D'Orso, I., Grunwell, J.R., Nakamura, R.L., Das, C. & Frankel, A.D. Targeting tat inhibitors in the assembly of human immunodeficiency virus type 1 transcription complexes. J. Virol. 82, 9492–9504 (2008).

    Article  CAS  Google Scholar 

  22. Pan, G., Aso, T. & Greenblatt, J. Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J. Biol. Chem. 272, 24563–24571 (1997).

    Article  CAS  Google Scholar 

  23. Barboric, M. et al. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res. 35, 2003–2012 (2007).

    Article  CAS  Google Scholar 

  24. Sedore, S.C. et al. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucleic Acids Res. 35, 4347–4358 (2007).

    Article  CAS  Google Scholar 

  25. Bres, V., Gomes, N., Pickle, L. & Jones, K.A. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 19, 1211–1226 (2005).

    Article  CAS  Google Scholar 

  26. Bres, V., Yoshida, T., Pickle, L. & Jones, K.A. SKIP interacts with c-Myc and Menin to promote HIV-1 Tat transactivation. Mol. Cell 36, 75–87 (2009).

    Article  CAS  Google Scholar 

  27. Keen, N.J., Gait, M.J. & Karn, J. Human immunodeficiency virus type-1 Tat is an integral component of the activated transcription-elongation complex. Proc. Natl. Acad. Sci. USA 93, 2505–2510 (1996).

    Article  CAS  Google Scholar 

  28. Berkhout, B., Gatignol, A., Rabson, A.B. & Jeang, K.T. TAR-independent activation of the HIV-1 LTR: evidence that tat requires specific regions of the promoter. Cell 62, 757–767 (1990).

    Article  CAS  Google Scholar 

  29. Kamine, J., Subramanian, T. & Chinnadurai, G. Sp1-dependent activation of a synthetic promoter by human immunodeficiency virus type 1 Tat protein. Proc. Natl. Acad. Sci. USA 88, 8510–8514 (1991).

    Article  CAS  Google Scholar 

  30. Krueger, B.J. et al. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res. 36, 2219–2229 (2008).

    Article  CAS  Google Scholar 

  31. Isel, C. & Karn, J. Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation. J. Mol. Biol. 290, 929–941 (1999).

    Article  CAS  Google Scholar 

  32. Ping, Y.H. & Rana, T.M. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J. Biol. Chem. 274, 7399–7404 (1999).

    Article  CAS  Google Scholar 

  33. Zhou, M. et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 20, 5077–5086 (2000).

    Article  CAS  Google Scholar 

  34. Zhou, C. & Rana, T.M. A bimolecular mechanism of HIV-1 Tat protein interaction with RNA polymerase II transcription elongation complexes. J. Mol. Biol. 320, 925–942 (2002).

    Article  CAS  Google Scholar 

  35. Garcia-Martinez, L.F., Ivanov, D. & Gaynor, R.B. Association of Tat with purified HIV-1 and HIV-2 transcription preinitiation complexes. J. Biol. Chem. 272, 6951–6958 (1997).

    Article  CAS  Google Scholar 

  36. Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 15, 71–78 (2008).

    Article  CAS  Google Scholar 

  37. Niranjanakumari, S., Lasda, E., Brazas, R. & Garcia-Blanco, M.A. Reversible crosslinking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26, 182–190 (2002).

    Article  CAS  Google Scholar 

  38. Czudnochowski, N., Vollmuth, F., Baumann, S., Vogel-Bachmayr, K. & Geyer, M. Specificity of Hexim1 and Hexim2 complex formation with cyclin T1/T2, importin alpha and 7SK snRNA. J. Mol. Biol. 395, 28–41 (2010).

    Article  CAS  Google Scholar 

  39. Schulte, A. et al. Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. J. Biol. Chem. 280, 24968–24977 (2005).

    Article  CAS  Google Scholar 

  40. Berkhout, B., Silverman, R.H. & Jeang, K.T. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59, 273–282 (1989).

    Article  CAS  Google Scholar 

  41. Kamine, J. & Chinnadurai, G. Synergistic activation of the human immunodeficiency virus type 1 promoter by the viral Tat protein and cellular transcription factor Sp1. J. Virol. 66, 3932–3936 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yedavalli, V.S., Benkirane, M. & Jeang, K.T. Tat and trans-activation-responsive (TAR) RNA-independent induction of HIV-1 long terminal repeat by human and murine cyclin T1 requires Sp1. J. Biol. Chem. 278, 6404–6410 (2003).

    Article  CAS  Google Scholar 

  43. Montanuy, I., Torremocha, R., Hernandez-Munain, C. & Sune, C. Promoter influences transcription elongation: TATA-box element mediates the assembly of processive transcription complexes responsive to cyclin-dependent kinase 9. J. Biol. Chem. 283, 7368–7378 (2008).

    Article  CAS  Google Scholar 

  44. Cujec, T.P. et al. The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase II holoenzyme. Mol. Cell. Biol. 17, 1817–1823 (1997).

    Article  CAS  Google Scholar 

  45. Fraldi, A. et al. Inhibition of Tat activity by the HEXIM1 protein. Retrovirology 2, 42 (2005).

    Article  Google Scholar 

  46. Southgate, C., Zapp, M.L. & Green, M.R. Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature 345, 640–642 (1990).

    Article  CAS  Google Scholar 

  47. Selby, M.J. & Peterlin, B.M. Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62, 769–776 (1990).

    Article  CAS  Google Scholar 

  48. Smith, C.A., Calabro, V. & Frankel, A.D. An RNA-binding chameleon. Mol. Cell 6, 1067–1076 (2000).

    Article  CAS  Google Scholar 

  49. D'Orso, I. & Frankel, A.D. Tat acetylation modulates assembly of a viral-host RNA-protein transcription complex. Proc. Natl. Acad. Sci. USA 106, 3101–3106 (2009).

    Article  CAS  Google Scholar 

  50. Casse, C., Giannoni, F., Nguyen, V.T., Dubois, M.F. & Bensaude, O. The transcriptional inhibitors, actinomycin D and α-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. J. Biol. Chem. 274, 16097–16106 (1999).

    Article  CAS  Google Scholar 

  51. Biglione, S. et al. Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology 4, 47 (2007).

    Article  Google Scholar 

  52. Ujvari, A. & Luse, D.S. Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J. Biol. Chem. 279, 49773–49779 (2004).

    Article  CAS  Google Scholar 

  53. Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004).

    Article  CAS  Google Scholar 

  54. Fong, Y.W. & Zhou, Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929–933 (2001).

    Article  CAS  Google Scholar 

  55. Young, T.M., Tsai, M., Tian, B., Mathews, M.B. & Pe'ery, T. Cellular mRNA activates transcription elongation by displacing 7SK RNA. PLoS One 2, e1010 (2007).

    Article  Google Scholar 

  56. Southgate, C.D. & Green, M.R. The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: implications for Tat function. Genes Dev. 5, 2496–2507 (1991).

    Article  CAS  Google Scholar 

  57. Lis, J.T., Mason, P., Peng, J., Price, D.H. & Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev. 14, 792–803 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sobhian, B. et al. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP in vivo. Mol. Cell 38, 439–451 (2010).

    Article  CAS  Google Scholar 

  59. Van Herreweghe, E. et al. Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P-TEFb. EMBO J. 26, 3570–3580 (2007).

    Article  CAS  Google Scholar 

  60. Barrandon, C., Bonnet, F., Nguyen, V.T., Labas, V. & Bensaude, O. The transcription-dependent dissociation of P-TEFb-HEXIM1–7SK RNA relies upon formation of hnRNP-7SK RNA complexes. Mol. Cell. Biol. 27, 6996–7006 (2007).

    Article  CAS  Google Scholar 

  61. Robert, F., Blanchette, M., Maes, O., Chabot, B. & Coulombe, B. A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly. J. Biol. Chem. 277, 9302–9306 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Yamamoto, P. Walter, C. Guthrie, R. Andino, J. Gross and N. Krogan for comments, J. Greenblatt (Univ. of Toronto) for reagents, members of the Frankel and Yamamoto laboratory for discussions and the reviewers for their insightful comments. This work was initially supported by an amfAR Mathilde Krim fellowship in Basic Biomedical Research (106988-43-RFNT) and a US National Institutes of Health K99/R00 grant A112185 to I.D. as well as US National Institutes of Health grants AI29135 and P50 GM082250 (HARC Center) to A.D.F.

Author information

Authors and Affiliations

Authors

Contributions

I.D. and A.D.F. designed research; I.D. performed research; I.D. and A.D.F. analyzed data and wrote the paper

Corresponding author

Correspondence to Alan D Frankel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3 and Supplementary Methods (PDF 2208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Orso, I., Frankel, A. RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation. Nat Struct Mol Biol 17, 815–821 (2010). https://doi.org/10.1038/nsmb.1827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing