Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution

Abstract

In the nucleus of eukaryotic cells, nascent transcripts are associated with heterogeneous nuclear ribonucleoprotein (hnRNP) particles that are nucleated by hnRNP C. Despite their abundance, however, it remained unclear whether these particles control pre-mRNA processing. Here, we developed individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) to study the role of hnRNP C in splicing regulation. iCLIP data show that hnRNP C recognizes uridine tracts with a defined long-range spacing consistent with hnRNP particle organization. hnRNP particles assemble on both introns and exons but remain generally excluded from splice sites. Integration of transcriptome-wide iCLIP data and alternative splicing profiles into an 'RNA map' indicates how the positioning of hnRNP particles determines their effect on the inclusion of alternative exons. The ability of high-resolution iCLIP data to provide insights into the mechanism of this regulation holds promise for studies of other higher-order ribonucleoprotein complexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: iCLIP identifies hnRNP C cross-link nucleotides on RNAs.
Figure 2: The genomic location of hnRNP C cross-link nucleotides.
Figure 3: hnRNP C binds uridine tracts with a defined spacing.
Figure 4: The RNA map relates hnRNP particle positioning to splicing regulation.
Figure 5: iCLIP data predict exons that are silenced by hnRNP C.
Figure 6: A model of hnRNP C tetramer binding at silenced and enhanced alternative exons.

Similar content being viewed by others

References

  1. Nilsen, T.W. & Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  Google Scholar 

  2. Wahl, M.C., Will, C.L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  Google Scholar 

  3. Chen, M. & Manley, J.L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741–754 (2009).

    Article  CAS  Google Scholar 

  4. Beyer, A.L., Christensen, M.E., Walker, B.W. & LeStourgeon, W.M. Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell 11, 127–138 (1977).

    Article  CAS  Google Scholar 

  5. Steitz, J.A. & Kamen, R. Arrangement of 30S heterogeneous nuclear ribonucleoprotein on polyoma virus late nuclear transcripts. Mol. Cell. Biol. 1, 21–34 (1981).

    Article  CAS  Google Scholar 

  6. Huang, M. et al. The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol. Cell. Biol. 14, 518–533 (1994).

    Article  CAS  Google Scholar 

  7. Reed, R. Mechanisms of fidelity in pre-mRNA splicing. Curr. Opin. Cell Biol. 12, 340–345 (2000).

    Article  CAS  Google Scholar 

  8. Amero, S.A. et al. Independent deposition of heterogeneous nuclear ribonucleoproteins and small nuclear ribonucleoprotein particles at sites of transcription. Proc. Natl. Acad. Sci. USA 89, 8409–8413 (1992).

    Article  CAS  Google Scholar 

  9. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  Google Scholar 

  10. Ule, J., Jensen, K., Mele, A. & Darnell, R.B. CLIP: A method for identifying protein–RNA interaction sites in living cells. Methods 37, 376–386 (2005).

    Article  CAS  Google Scholar 

  11. Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  Google Scholar 

  12. Yeo, G.W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  Google Scholar 

  13. Urlaub, H., Hartmuth, K. & Lührmann, R. A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods 26, 170–181 (2002).

    Article  CAS  Google Scholar 

  14. Xue, Y. et al. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell 36, 996–1006 (2009).

    Article  CAS  Google Scholar 

  15. Kim, J.H. et al. Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol. Cell. Biol. 23, 708–720 (2003).

    Article  CAS  Google Scholar 

  16. Zaidi, S.H. & Malter, J.S. Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3′-untranslated region of amyloid protein precursor mRNA. J. Biol. Chem. 270, 17292–17298 (1995).

    Article  CAS  Google Scholar 

  17. Gorlach, M., Wittekind, M., Beckman, R.A., Mueller, L. & Dreyfuss, G. Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J. 11, 3289–3295 (1992).

    Article  CAS  Google Scholar 

  18. Gorlach, M., Burd, C.G. & Dreyfuss, G. The determinants of RNA-binding specificity of the heterogeneous nuclear ribonucleoprotein C proteins. J. Biol. Chem. 269, 23074–23078 (1994).

    CAS  PubMed  Google Scholar 

  19. Wan, L., Kim, J.K., Pollard, V.W. & Dreyfuss, G. Mutational definition of RNA-binding and protein–protein interaction domains of heterogeneous nuclear RNP C1. J. Biol. Chem. 276, 7681–7688 (2001).

    Article  CAS  Google Scholar 

  20. Hockensmith, J.W., Kubasek, W.L., Vorachek, W.R. & von Hippel, P.H. Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system. J. Biol. Chem. 261, 3512–3518 (1986).

    CAS  PubMed  Google Scholar 

  21. Hockensmith, J.W., Kubasek, W.L., Vorachek, W.R. & von Hippel, P.H. Laser cross-linking of proteins to nucleic acids. I. Examining physical parameters of protein–nucleic acid complexes. J. Biol. Chem. 268, 15712–15720 (1993).

    CAS  PubMed  Google Scholar 

  22. Whitson, S.R., LeStourgeon, W.M. & Krezel, A.M. Solution structure of the symmetric coiled coil tetramer formed by the oligomerization domain of hnRNP C: implications for biological function. J. Mol. Biol. 350, 319–337 (2005).

    Article  CAS  Google Scholar 

  23. Barnett, S.F., Friedman, D.L. & LeStourgeon, W.M. The C proteins of HeLa 40S nuclear ribonucleoprotein particles exist as anisotropic tetramers of (C1)3 C2. Mol. Cell. Biol. 9, 492–498 (1989).

    Article  CAS  Google Scholar 

  24. McAfee, J.G., Soltaninassab, S.R., Lindsay, M.E. & LeStourgeon, W.M. Proteins C1 and C2 of heterogeneous nuclear ribonucleoprotein complexes bind RNA in a highly cooperative fashion: support for their contiguous deposition on pre-mRNA during transcription. Biochemistry 35, 1212–1222 (1996).

    Article  CAS  Google Scholar 

  25. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  Google Scholar 

  26. Singh, R., Valcarcel, J. & Green, M.R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268, 1173–1176 (1995).

    Article  CAS  Google Scholar 

  27. Gooding, C., Roberts, G.C., Moreau, G., Nadal-Ginard, B. & Smith, C.W. Smooth muscle-specific switching of alpha-tropomyosin mutually exclusive exon selection by specific inhibition of the strong default exon. EMBO J. 13, 3861–3872 (1994).

    Article  CAS  Google Scholar 

  28. Oberstrass, F.C. et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309, 2054–2057 (2005).

    Article  CAS  Google Scholar 

  29. McAfee, J.G., Shahied-Milam, L., Soltaninassab, S.R. & LeStourgeon, W.M. A major determinant of hnRNP C protein binding to RNA is a novel bZIP-like RNA binding domain. RNA 2, 1139–1152 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi, Y.D., Grabowski, P.J., Sharp, P.A. & Dreyfuss, G. Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science 231, 1534–1539 (1986).

    Article  CAS  Google Scholar 

  31. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  32. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

  33. Hubbard, T.J. et al. Ensembl 2009. Nucleic Acids Res. 37, D690–D697 (2009).

    Article  CAS  Google Scholar 

  34. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844–852 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Ule laboratory for experimental assistance and discussion, A. Klug, K. Nagai, M. Babu, S. Eustermann, N. McGlincy, D. Daujotyte and O. Rossbach for fruitful discussions and comments on the manuscript, J. Hadfield and N. Matthews for high-throughput sequencing and B. Rhead and B. Raney for modifying the UCSC Genome Browser BedGraph format. This work was supported by the European Research Council grant 206726-CLIP and Human Frontiers Science Program grant RGP0024 to J.U. and a Long-term Human Frontiers Science Program fellowship to J.K.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and J.U. designed the iCLIP protocol and J.K. carried out iCLIP, microarray and PCR experiments; D.J.T. performed high-throughput sequencing; G.R., T.C. and B.Z. mapped the iCLIP sequence reads to genome and evaluated random barcodes; K.Z. and N.M.L. analyzed the sequence and positioning of hnRNP C cross-link sites and the function of hnRNP particles; M.K. developed the ASPIRE3 software to analyze splice-junction microarray data and generated the RNA map; J.K., K.Z. and J.U. wrote the manuscript.

Corresponding author

Correspondence to Jernej Ule.

Ethics declarations

Competing interests

The authors have applied for a patent for iCLIP.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–3 and Supplementary Methods (PDF 5874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, J., Zarnack, K., Rot, G. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17, 909–915 (2010). https://doi.org/10.1038/nsmb.1838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing