Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies

Abstract

Amyloid precursor protein (APP) regulates neuronal synapse function, and its cleavage product Aβ is linked to Alzheimer's disease. Here, we present evidence that the RNA-binding proteins (RBPs) heterogeneous nuclear ribonucleoprotein (hnRNP) C and fragile X mental retardation protein (FMRP) associate with the same APP mRNA coding region element, and they influence APP translation competitively and in opposite directions. Silencing hnRNP C increased FMRP binding to APP mRNA and repressed APP translation, whereas silencing FMRP enhanced hnRNP C binding and promoted translation. Repression of APP translation was linked to colocalization of FMRP and tagged APP RNA within processing bodies; this colocalization was abrogated by hnRNP C overexpression or FMRP silencing. Our findings indicate that FMRP represses translation by recruiting APP mRNA to processing bodies, whereas hnRNP C promotes APP translation by displacing FMRP, thereby relieving the translational block.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: hnRNP C and FMRP interact with the coding region of APP mRNA.
Figure 2: Effect of silencing hnRNP C and FMRP on APP expression.
Figure 3: hnRNP C modestly reduces APP expression levels through the APP 3′ UTR.
Figure 4: hnRNP C and FMRP control APP levels through the APP CR(C).
Figure 5: hnRNP C and FMRP bind the APP CR(C) competitively.
Figure 6: APP mRNA interacts with components of processing bodies.
Figure 7: APP RNA colocalizes with PBs in an FMRP– and hnRNP C–dependent manner.
Figure 8: Model of competition between FMRP and hnRNP C to modulate APP translation.

Similar content being viewed by others

References

  1. Torroja, L., Packard, M., Gorczyca, M., White, K. & Budnik, V. The Drosophila β-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J. Neurosci. 19, 7793–7803 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mattson, M.P. Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Yang, G. et al. Reduced synaptic vesicle density and active zone size in mice lacking amyloid precursor protein (APP) and APP-like protein 2. Neurosci. Lett. 384, 66–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Rumble, B. et al. Amyloid A4 protein and its precursor in Down's syndrome and Alzheimer's disease. N. Engl. J. Med. 320, 1446–1452 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Cohen, M.L., Golde, T.E., Usiak, M.F., Younkin, L.H. & Younkin, S.G. In situ hybridization of nucleus basalis neuron shows increased β-amyloid mRNA in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 85, 1227–1231 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Higgins, G.A., Oyler, G.A., Neve, R.L., Chen, K.S. & Gage, F.H. Altered levels of amyloid protein precursor transcripts in the basal forebrain of behaviorally impaired aged rats. Proc. Natl. Acad. Sci. USA 87, 3032–3036 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buckland, P. et al. Amyloid precursor protein mRNA levels in the mononuclear blood cells of Alzheimer's and Down's patients. Brain Res. Mol. Brain Res. 18, 316–320 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Theuns, J. et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am. J. Hum. Genet. 78, 936–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lv, H., Jia, L. & Jia, J. Promoter polymorphisms which modulate APP expression may increase susceptibility to Alzheimer's disease. Neurobiol. Aging 29, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, P.L., Niidome, T., Akaike, A., Kihara, T. & Sugimoto, H. Rac1 inhibition negatively regulates transcriptional activity of the amyloid precursor protein gene. J. Neurosci. Res. 87, 2105–2114 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Patel, N. et al. MicroRNAs can regulate human APP levels. Mol. Neurodegener. 3, 10 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hébert, S.S. et al. MicroRNA regulation of Alzheimer's amyloid precursor protein expression. Neurobiol. Dis. 33, 422–428 (2009).

    Article  PubMed  Google Scholar 

  14. Rajagopalan, L.E., Westmark, C.J., Jarzembowski, J.A. & Malter, J.S. hnRNP C increases amyloid precursor protein (APP) production by stabilizing APP mRNA. Nucleic Acids Res. 26, 3418–3423 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Westmark, C.J. & Malter, J.S. Extracellular-regulated kinase controls β-amyloid precursor protein mRNA decay. Brain Res. Mol. Brain Res. 90, 193–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Rogers, J.T. et al. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer's amyloid precursor protein transcript. J. Biol. Chem. 277, 45518–45528 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Beaudoin, M.E., Poirel, V.J. & Krushel, L.A. Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Res. 36, 6835–6847 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Westmark, C.J. & Malter, J.S. FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 5, e52 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Moore, M.J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Zalfa, F. et al. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Barbee, S.A. et al. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 997–1009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 8, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Balagopal, V. & Parker, R. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr. Opin. Cell Biol. 21, 403–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu, C.Y. & Rana, T.M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, 1122–1136 (2008).

    Google Scholar 

  27. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laggerbauer, B., Ostareck, D., Keidel, E.M., Ostareck-Lederer, A. & Fischer, U. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet. 10, 329–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Todd, P.K., Mack, K.J. & Malter, J.S. The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor dependent translation of PSD-95. Proc. Natl. Acad. Sci. USA 100, 14374–14378 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ceman, S. et al. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum. Mol. Genet. 12, 3295–3305 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Zalfa, F., Achsel, T. & Bagni, C. mRNPs, polysomes or granules: FMRP in neuronal protein synthesis. Curr. Opin. Neurobiol. 16, 265–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Zukin, R.S., Richter, J.D. & Bagni, C. Signals, synapses, and synthesis: how new proteins control plasticity. Front. Neural Circuits 3, 14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Caudy, A.A., Myers, M., Hannon, G.J. & Hammond, S.M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishizuka, A., Siomi, M.C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497–2508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin, P., Alisch, R.S. & Warren, S.T. RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol. 6, 1048–1053 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci. 7, 113–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Didiot, M.C., Subramanian, M., Flatter, E., Mandel, J.L. & Moine, H. Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly. Mol. Biol. Cell 20, 428–437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, X. et al. A 57-nucleotide upstream early polyadenylation element in human papillomavirus type 16 interacts with hFip1, CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein. J. Virol. 79, 4270–4288 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schepens, B. et al. A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO J. 26, 158–169 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ingelfinger, D., Arndt-Jovin, D.J., Lührmann, R. & Achsel, T. The human LSm1–7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8, 1489–1501 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. van Dijk, E. et al. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21, 6915–6924 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cougot, N., Babajko, S. & Séraphin, B. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31–40 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rajagopalan, L.E. & Malter, J.S. Growth factor-mediated stabilization of amyloid precursor protein mRNA is mediated by a conserved 29-nucleotide sequence in the 3′ untranslated region. J. Neurochem. 74, 52–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Abdelmohsen, K., Srikantan, S., Kuwano, Y. & Gorospe, M. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc. Natl. Acad. Sci. USA 105, 20297–20302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdelmohsen, K. et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol. Cell 25, 543–557 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jensen, K.B. & Darnell, R.B. CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol. Biol. 488, 85–98 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuwano, Y. et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol. Cell. Biol. 28, 4562–4575 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F.E. Indig and M.H. Dehoff for assistance with experiments. This research was supported by the National Institute on Aging-Intramural Research Program, US National Institutes of Health. P.F.W. is suppported by DA00266.

Author information

Authors and Affiliations

Authors

Contributions

E.K.L., H.H.K., K.A., J.L.M., X.Y., M.P.M. and M. Gorospe designed the study; E.K.L., H.H.K., Y. K., K.A., S.S., S.S.S., J.L.M. and X.Y. performed the experiments; E.K.L., Y. K., M. Gleichmann, M.R.M., X.Y., P.F.W. and M.P.M. contributed key reagents; E.K.L., M.P.M. and M. Gorospe wrote the paper.

Corresponding author

Correspondence to Myriam Gorospe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E., Kim, H., Kuwano, Y. et al. hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat Struct Mol Biol 17, 732–739 (2010). https://doi.org/10.1038/nsmb.1815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing