Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites

Abstract

The serine/threonine protein phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets. PP1 associates with ≥200 regulatory proteins to form highly specific holoenzymes. These regulatory proteins target PP1 to its point of action within the cell and prime its enzymatic specificity for particular substrates. However, how they direct PP1's specificity is not understood. Here we show that spinophilin, a neuronal PP1 regulator, is entirely unstructured in its unbound form, and it binds PP1 through a folding-upon-binding mechanism in an elongated fashion, blocking one of PP1's three putative substrate binding sites without altering its active site. This mode of binding is sufficient for spinophilin to restrict PP1's activity toward a model substrate in vitro without affecting its ability to dephosphorylate its neuronal substrate, glutamate receptor 1 (GluR1). Thus, our work provides the molecular basis for the ability of spinophilin to dictate PP1 substrate specificity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The unbound spinophilin PP1 binding domain.
Figure 2: The spinophilin417–583–PP1α7–330 complex.
Figure 3: Spinophilin's interaction with the PP1 RVXF binding pocket.
Figure 4: Spinophilin's PP1 interaction regions II, III and IV.
Figure 5: Spinophilin creates a unique holoenzyme with novel substrate specificity.
Figure 6: Spinophilin affects the PP1 substrate binding surface without changing the active site.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Ubersax, J.A. & Ferrell, J.E. Jr. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530–541 (2007).

    Article  CAS  Google Scholar 

  2. Cohen, P. The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem. Sci. 25, 596–601 (2000).

    Article  CAS  Google Scholar 

  3. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).

    Article  CAS  Google Scholar 

  4. Cohen, P.T. Protein phosphatase 1–targeted in many directions. J. Cell Sci. 115, 241–256 (2002).

    CAS  PubMed  Google Scholar 

  5. Kelker, M.S., Page, R. & Peti, W. Crystal structures of protein phosphatase-1 bound to nodularin-R and tautomycin: a novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J. Mol. Biol. 385, 11–21 (2009).

    Article  CAS  Google Scholar 

  6. Egloff, M.P., Cohen, P.T., Reinemer, P. & Barford, D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J. Mol. Biol. 254, 942–959 (1995).

    Article  CAS  Google Scholar 

  7. Goldberg, J. et al. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376, 745–753 (1995).

    Article  CAS  Google Scholar 

  8. Maynes, J.T. et al. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. J. Biol. Chem. 276, 44078–44082 (2001).

    Article  CAS  Google Scholar 

  9. Hendrickx, A. et al. Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem. Biol. 16, 365–371 (2009).

    Article  CAS  Google Scholar 

  10. Ceulemans, H. & Bollen, M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. 84, 1–39 (2004).

    Article  CAS  Google Scholar 

  11. Bollen, M. Combinatorial control of protein phosphatase-1. Trends Biochem. Sci. 26, 426–431 (2001).

    Article  CAS  Google Scholar 

  12. Egloff, M.P. et al. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16, 1876–1887 (1997).

    Article  CAS  Google Scholar 

  13. Dancheck, B., Nairn, A.C. & Peti, W. Detailed structural characterization of unbound protein phosphatase 1 inhibitors. Biochemistry 47, 12346–12356 (2008).

    Article  CAS  Google Scholar 

  14. Hurley, T.D. et al. Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J. Biol. Chem. 282, 28874–28883 (2007).

    Article  CAS  Google Scholar 

  15. Terrak, M., Kerff, F., Langsetmo, K., Tao, T. & Dominguez, R. Structural basis of protein phosphatase 1 regulation. Nature 429, 780–784 (2004).

    Article  CAS  Google Scholar 

  16. Allen, P.B., Ouimet, C.C. & Greengard, P. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc. Natl. Acad. Sci. USA 94, 9956–9961 (1997).

    Article  CAS  Google Scholar 

  17. Yan, Z. et al. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat. Neurosci. 2, 13–17 (1999).

    Article  CAS  Google Scholar 

  18. Bielas, S.L. et al. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 129, 579–591 (2007).

    Article  CAS  Google Scholar 

  19. Charlton, J.J. et al. Multiple actions of spinophilin regulate μ opioid receptor function. Neuron 58, 238–247 (2008).

    Article  CAS  Google Scholar 

  20. Allen, P.B. et al. Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience 140, 897–911 (2006).

    Article  CAS  Google Scholar 

  21. Brown, A.M., Baucum, A.J., Bass, M.A. & Colbran, R.J. Association of protein phosphatase 1 γ 1 with spinophilin suppresses phosphatase activity in a Parkinson disease model. J. Biol. Chem. 283, 14286–14294 (2008).

    Article  CAS  Google Scholar 

  22. Hsieh-Wilson, L.C., Allen, P.B., Watanabe, T., Nairn, A.C. & Greengard, P. Characterization of the neuronal targeting protein spinophilin and its interactions with protein phosphatase-1. Biochemistry 38, 4365–4373 (1999).

    Article  CAS  Google Scholar 

  23. Dyson, H.J. & Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  Google Scholar 

  24. Kita, A. et al. Crystal structure of the complex between calyculin A and the catalytic subunit of protein phosphatase 1. Structure 10, 715–724 (2002).

    Article  CAS  Google Scholar 

  25. Fraczkiewicz, R. & Braun, W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 19, 319–333 (1998).

    Article  CAS  Google Scholar 

  26. Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  Google Scholar 

  27. Dyson, H.J. & Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54–60 (2002).

    Article  CAS  Google Scholar 

  28. Tanaka, J. et al. Interaction of myosin phosphatase target subunit 1 with the catalytic subunit of type 1 protein phosphatase. Biochemistry 37, 16697–16703 (1998).

    Article  CAS  Google Scholar 

  29. Hubbard, M.J. & Cohen, P. Regulation of protein phosphatase-1G from rabbit skeletal muscle. 2. Catalytic subunit translocation is a mechanism for reversible inhibition of activity toward glycogen-bound substrates. Eur. J. Biochem. 186, 711–716 (1989).

    Article  CAS  Google Scholar 

  30. Zhang, J., Zhang, Z., Brew, K. & Lee, E.Y. Mutational analysis of the catalytic subunit of muscle protein phosphatase-1. Biochemistry 35, 6276–6282 (1996).

    Article  CAS  Google Scholar 

  31. Ceulemans, H. et al. Binding of the concave surface of the Sds22 superhelix to the α 4/α 5/α 6-triangle of protein phosphatase-1. J. Biol. Chem. 277, 47331–47337 (2002).

    Article  CAS  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  33. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  34. Kelker, M.S. et al. Structural basis for spinophilin-neurabin receptor interaction. Biochemistry 46, 2333–2344 (2007).

    Article  CAS  Google Scholar 

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  36. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  37. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D Biol. Crystallogr. 49, 129–147 (1993).

    Article  CAS  Google Scholar 

  38. Painter, J. & Merritt, E.A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111 (2006).

    Article  CAS  Google Scholar 

  39. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–83 (2007).

    Article  Google Scholar 

  40. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  41. Cohen, P. et al. Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol. 159, 390–408 (1988).

    Article  CAS  Google Scholar 

  42. Jacques, A.M. et al. Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle. J. Mol. Cell. Cardiol. 45, 209–216 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NS056128 to W.P.; MH074866 to A.C.N.). W.P. is the Manning Assistant Professor of Medical Science at Brown University. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship to B.D. Crystallographic data was collected at the X6A beamline, funded by the National Institute of General Medical Sciences, under agreement GM-0080. The National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the US Department of Energy under contract number DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Contributions

M.J.R. performed ITC, dephosphorylation assays and crystallization of the spinophilin–PP1, spinophilin–PP1–nodularin-R and neurabin–PP1 complexes; W.P. purified unbound spinophilin for NMR studies; B.D. performed and analyzed NMR studies of unbound spinophilin; M.J.R., D.A.C. and R.P. collected, processed and refined X-ray data; M.J.R., A.C.N., R.P. and W.P. wrote the paper; all authors discussed the data and manuscript.

Corresponding author

Correspondence to Wolfgang Peti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1833 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragusa, M., Dancheck, B., Critton, D. et al. Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol 17, 459–464 (2010). https://doi.org/10.1038/nsmb.1786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing