Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic changes in histone acetylation regulate origins of DNA replication

Abstract

Although histone modifications have been implicated in many DNA-dependent processes, their precise role in DNA replication remains largely unknown. Here we describe an efficient single-step method to specifically purify histones located around an origin of replication from Saccharomyces cerevisiae. Using high-resolution MS, we have obtained a comprehensive view of the histone modifications surrounding the origin of replication throughout the cell cycle. We have discovered that acetylation of histone H3 and H4 is dynamically regulated around an origin of replication, at the level of multiply acetylated histones. Furthermore, we find that this acetylation is required for efficient origin activation during S phase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TALO8 minichromosome system.
Figure 2: Identification of combinations of modifications occurring on the same peptide in TALO8 histones.
Figure 3: Quantitative analysis of histone acetylations.
Figure 4: Acetylation of multiple lysine residues on histone H3 and H4 tails is required for efficient DNA replication.
Figure 5: Acetylation of multiple lysine residues on H3 and H4 tails facilitates origin firing.
Figure 6: Acetylation of multiple lysine residues on H3 and H4 tails facilitates origin firing during normal growth.

Similar content being viewed by others

References

  1. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  2. Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721–733 (2007).

    Article  CAS  Google Scholar 

  3. Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  Google Scholar 

  4. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  5. Stinchcomb, D.T., Struhl, K. & Davis, R.W. Isolation and characterisation of a yeast chromosomal replicator. Nature 282, 39–43 (1979).

    Article  CAS  Google Scholar 

  6. Bell, S.P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002).

    Article  CAS  Google Scholar 

  7. Brown, J.A., Holmes, S.G. & Smith, M.M. The chromatin structure of Saccharomyces cerevisiae autonomously replicating sequences changes during the cell division cycle. Mol. Cell. Biol. 11, 5301–5311 (1991).

    Article  CAS  Google Scholar 

  8. Simpson, R.T. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343, 387–389 (1990).

    Article  CAS  Google Scholar 

  9. Ferguson, B.M. & Fangman, W.L. A position effect on the time of replication origin activation in yeast. Cell 68, 333–339 (1992).

    Article  CAS  Google Scholar 

  10. Stevenson, J.B. & Gottschling, D.E. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 13, 146–151 (1999).

    Article  CAS  Google Scholar 

  11. Aparicio, J.G., Viggiani, C.J., Gibson, D.G. & Aparicio, O.M. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4769–4780 (2004).

    Article  CAS  Google Scholar 

  12. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B.J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233 (2002).

    Article  CAS  Google Scholar 

  13. Iizuka, M. & Stillman, B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 274, 23027–23034 (1999).

    Article  CAS  Google Scholar 

  14. Burke, T.W., Cook, J.G., Asano, M. & Nevins, J.R. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J. Biol. Chem. 276, 15397–15408 (2001).

    Article  CAS  Google Scholar 

  15. Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479–2484 (2002).

    Article  CAS  Google Scholar 

  16. Pappas, D.L. Jr., Frisch, R. & Weinreich, M. The NAD+-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication. Genes Dev. 18, 769–781 (2004).

    Article  CAS  Google Scholar 

  17. Raghuraman, M.K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    Article  CAS  Google Scholar 

  18. Wyrick, J.J. et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357–2360 (2001).

    Article  CAS  Google Scholar 

  19. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–915 (2000).

    Article  CAS  Google Scholar 

  20. Strahl, B.D. et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11, 996–1000 (2001).

    Article  CAS  Google Scholar 

  21. Zhang, L., Eugeni, E.E., Parthun, M.R. & Freitas, M.A. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112, 77–86 (2003).

    Article  CAS  Google Scholar 

  22. Ye, J. et al. Histone H4 lysine 91 acetylation a core domain modification associated with chromatin assembly. Mol. Cell 18, 123–130 (2005).

    Article  CAS  Google Scholar 

  23. Taverna, S.D. et al. Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc. Natl. Acad. Sci. USA 104, 2086–2091 (2007).

    Article  CAS  Google Scholar 

  24. Zakian, V.A. & Scott, J.F. Construction, replication, and chromatin structure of TRP1 RI circle, a multiple-copy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA. Mol. Cell. Biol. 2, 221–232 (1982).

    Article  CAS  Google Scholar 

  25. Thoma, F., Bergman, L.W. & Simpson, R.T. Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J. Mol. Biol. 177, 715–733 (1984).

    Article  CAS  Google Scholar 

  26. Ducker, C.E. & Simpson, R.T. The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome. EMBO J. 19, 400–409 (2000).

    Article  CAS  Google Scholar 

  27. Dean, A., Pederson, D.S. & Simpson, R.T. Isolation of yeast plasmid chromatin. Methods Enzymol. 170, 26–41 (1989).

    Article  CAS  Google Scholar 

  28. Ivanov, D. & Nasmyth, K. A topological interaction between cohesin rings and a circular minichromosome. Cell 122, 849–860 (2005).

    Article  CAS  Google Scholar 

  29. Craig, R. & Beavis, R.C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    Article  CAS  Google Scholar 

  30. Brewer, B.J. & Fangman, W.L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51, 463–471 (1987).

    Article  CAS  Google Scholar 

  31. Garcia, B.A. et al. Organismal differences in post-translational modifications in histones H3 and H4. J. Biol. Chem. 282, 7641–7655 (2007).

    Article  CAS  Google Scholar 

  32. Kristjuhan, A. et al. Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region. Mol. Cell 10, 925–933 (2002).

    Article  CAS  Google Scholar 

  33. Strahl, B.D. et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22, 1298–1306 (2002).

    Article  CAS  Google Scholar 

  34. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  Google Scholar 

  35. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  Google Scholar 

  36. Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298 (2005).

    Article  CAS  Google Scholar 

  37. Li, Q. et al. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134, 244–255 (2008).

    Article  CAS  Google Scholar 

  38. Maas, N.L., Miller, K.M., DeFazio, L.G. & Toczyski, D.P. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23, 109–119 (2006).

    Article  CAS  Google Scholar 

  39. Kaplan, T. et al. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast. PLoS Genet. 4, e1000270 (2008).

    Article  Google Scholar 

  40. Megee, P.C., Morgan, B.A. & Smith, M.M. Histone H4 and the maintenance of genome integrity. Genes Dev. 9, 1716–1727 (1995).

    Article  CAS  Google Scholar 

  41. Megee, P.C., Morgan, B.A., Mittman, B.A. & Smith, M.M. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247, 841–845 (1990).

    Article  CAS  Google Scholar 

  42. Smith, C.M. et al. Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4. Anal. Biochem. 316, 23–33 (2003).

    Article  CAS  Google Scholar 

  43. Suka, N., Luo, K. & Grunstein, M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat. Genet. 32, 378–383 (2002).

    Article  CAS  Google Scholar 

  44. Kimura, A., Umehara, T. & Horikoshi, M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat. Genet. 32, 370–377 (2002).

    Article  Google Scholar 

  45. Tye, B.K. Minichromosome maintenance as a genetic assay for defects in DNA replication. Methods 18, 329–334 (1999).

    Article  CAS  Google Scholar 

  46. Hogan, E. & Koshland, D. Addition of extra origins of replication to a minichromosome suppresses its mitotic loss in cdc6 and cdc14 mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89, 3098–3102 (1992).

    Article  CAS  Google Scholar 

  47. Akiyoshi, B., Nelson, C.R., Ranish, J.A. & Biggins, S. Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev. 23, 2887–2899 (2009).

    Article  CAS  Google Scholar 

  48. Hyland, E.M. et al. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 10060–10070 (2005).

    Article  CAS  Google Scholar 

  49. Chandrasekharan, M.B., Huang, F. & Sun, Z.W. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc. Natl. Acad. Sci. USA 106, 16686–16691 (2009).

    Article  CAS  Google Scholar 

  50. Fleming, A.B., Kao, C.F., Hillyer, C., Pikaart, M. & Osley, M.A. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol. Cell 31, 57–66 (2008).

    Article  CAS  Google Scholar 

  51. Pryde, F. et al. H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS One 4, e5882 (2009).

    Article  Google Scholar 

  52. Possoz, C., Filipe, S.R., Grainge, I. & Sherratt, D.J. Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J. 25, 2596–2604 (2006).

    Article  CAS  Google Scholar 

  53. Ling, X., Harkness, T.A., Schultz, M.C., Fisher-Adams, G. & Grunstein, M. Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation. Genes Dev. 10, 686–699 (1996).

    Article  CAS  Google Scholar 

  54. Thomas, B.J. & Rothstein, R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123, 725–738 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao, X., Muller, E.G. & Rothstein, R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2, 329–340 (1998).

    Article  CAS  Google Scholar 

  56. Vincent, J.A., Kwong, T.J. & Tsukiyama, T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat. Struct. Mol. Biol. 15, 477–484 (2008).

    Article  CAS  Google Scholar 

  57. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  Google Scholar 

  58. Rauch, A. et al. Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J. Proteome Res. 5, 112–121 (2006).

    Article  CAS  Google Scholar 

  59. Liberi, G. et al. Methods to study replication fork collapse in budding yeast. Methods Enzymol. 409, 442–462 (2006).

    Article  CAS  Google Scholar 

  60. Lopes, M., Cotta-Ramusino, C., Liberi, G. & Foiani, M. Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol. Cell 12, 1499–1510 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Biggins, B. Akiyoshi and N. Ebel for technical help and advice in developing the TALO8 purification scheme, L.N. Jones and J. Hogan of the Proteomics Facility at the Fred Hutchinson Cancer Research Center for help with MS, J. Eng and B. MacLean for advice with using X!Tandem, T. Kwong (Fred Hutchinson Cancer Research Center), D. Koshland (Carnegie Institute), B. Brewer and M.K. Raghuraman (Univ. of Washington) for the plasmids used in the plasmid-loss assay, and members of the Tsukiyama laboratory S. Parkhurst, S. Biggins, B. Akiyoshi and C. Nelson for helpful comments on the manuscript. This work is supported in part by US National Institutes of Health grant R01 GM078259 to T.T. The Fred Hutchinson Cancer Research Center Proteomics Facility is supported by Cancer Center support grant P30 CA15704.

Author information

Authors and Affiliations

Authors

Contributions

A.U. performed the experiments, with help from P.R.G. on MS analyses; T.T. supervised the experiments; A.U. and T.T. wrote the manuscript; all authors discussed the results and approved the manuscript.

Corresponding author

Correspondence to Toshio Tsukiyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–3 and Supplementary Methods (PDF 7369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unnikrishnan, A., Gafken, P. & Tsukiyama, T. Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol 17, 430–437 (2010). https://doi.org/10.1038/nsmb.1780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing