Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation

Abstract

The dodecameric holoenzyme of calcium–calmodulin-dependent protein kinase II (CaMKII) responds to high-frequency Ca2+ pulses to become Ca2+ independent. A simple coincidence-detector model for Ca2+-frequency dependency assumes noncooperative activation of kinase domains. We show that activation of CaMKII by Ca2+–calmodulin is cooperative, with a Hill coefficient of 3.0, implying sequential kinase-domain activation beyond dimeric units. We present data for a model in which cooperative activation includes the intersubunit 'capture' of regulatory segments. Such a capture interaction is seen in a crystal structure that shows extensive contacts between the regulatory segment of one kinase and the catalytic domain of another. These interactions are mimicked by a natural inhibitor of CaMKII. Our results show that a simple coincidence-detection model cannot be operative and point to the importance of kinetic dissection of the frequency-response mechanism in future experiments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cartoon schematic of models for CaMKII activation.
Figure 2: Cooperativity of CaMKII activation by Ca2+–calmodulin.
Figure 3: Crystal structure of the CaMKII enzyme–substrate complex.
Figure 4: Capture of the regulatory segment results in cooperative activation of a monomeric kinase domain.
Figure 5: Structure of the CaMKII inhibitor CaMKIINtide bound to the kinase domain.
Figure 6: A hypothetical mechanism for CaMKII activation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. De Koninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).

    Article  CAS  Google Scholar 

  2. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  3. Anderson, M.E., Braun, A.P., Schulman, H. & Premack, B.A. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ. Res. 75, 854–861 (1994).

    Article  CAS  Google Scholar 

  4. Giese, K.P., Fedorov, N.B., Filipkowski, R.K. & Silva, A.J. Autophosphorylation at Thr286 of the α calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    Article  CAS  Google Scholar 

  5. Silva, A.J., Paylor, R., Wehner, J.M. & Tonegawa, S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

    Article  CAS  Google Scholar 

  6. Hoelz, A., Nairn, A.C. & Kuriyan, J. Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. Mol. Cell 11, 1241–1251 (2003).

    Article  CAS  Google Scholar 

  7. Gaertner, T.R. et al. Comparative analyses of the three-dimensional structures and enzymatic properties of α, β, γ and δ isoforms of Ca2+-calmodulin-dependent protein kinase II. J. Biol. Chem. 279, 12484–12494 (2004).

    Article  CAS  Google Scholar 

  8. Rosenberg, O.S., Deindl, S., Sung, R.J., Nairn, A.C. & Kuriyan, J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123, 849–860 (2005).

    Article  CAS  Google Scholar 

  9. Hudmon, A. & Schulman, H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem. J. 364, 593–611 (2002).

    Article  CAS  Google Scholar 

  10. Rich, R.C. & Schulman, H. Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 273, 28424–28429 (1998).

    Article  CAS  Google Scholar 

  11. Hanson, P.I., Meyer, T., Stryer, L. & Schulman, H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12, 943–956 (1994).

    Article  CAS  Google Scholar 

  12. Fong, Y.L., Taylor, W.L., Means, A.R. & Soderling, T.R. Studies of the regulatory mechanism of Ca2+-calmodulin-dependent protein kinase-II - mutation of threonine-286 to alanine and aspartate. J. Biol. Chem. 264, 16759–16763 (1989).

    CAS  PubMed  Google Scholar 

  13. Waldmann, R., Hanson, P.I. & Schulman, H. Multifunctional Ca2+/calmodulin-dependent protein kinase made Ca2+ independent for functional studies. Biochemistry 29, 1679–1684 (1990).

    Article  CAS  Google Scholar 

  14. Miller, S.G. & Kennedy, M.B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44, 861–870 (1986).

    Article  CAS  Google Scholar 

  15. Miller, S.G., Patton, B.L. & Kennedy, M.B. Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity. Neuron 1, 593–604 (1988).

    Article  CAS  Google Scholar 

  16. Bradshaw, J.M., Kubota, Y., Meyer, T. & Schulman, H. An ultrasensitive Ca2+/calmodulin–dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc. Natl. Acad. Sci. USA 100, 10512–10517 (2003).

    Article  CAS  Google Scholar 

  17. Hanson, P.I., Kapiloff, M.S., Lou, L.L., Rosenfeld, M.G. & Schulman, H. Expression of a multifunctional Ca2+/calmodulin–dependent protein kinase and mutational analysis of its autoregulation. Neuron 3, 59–70 (1989).

    Article  CAS  Google Scholar 

  18. Woodgett, J.R., Davison, M.T. & Cohen, P. The calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle. Purification, subunit structure and substrate specificity. Eur. J. Biochem. 136, 481–487 (1983).

    Article  CAS  Google Scholar 

  19. Johnson, L.N. & Lewis, R.J. Structural basis for control by phosphorylation. Chem. Rev. 101, 2209–2242 (2001).

    Article  CAS  Google Scholar 

  20. Colbran, R.J., Smith, M.K., Schworer, C.M., Fong, Y.L. & Soderling, T.R. Regulatory domain of calcium/calmodulin–dependent protein kinase II. Mechanism of inhibition and regulation by phosphorylation. J. Biol. Chem. 264, 4800–4804 (1989).

    CAS  PubMed  Google Scholar 

  21. Shifman, J.M., Choi, M.H., Mihalas, S., Mayo, S.L. & Kennedy, M.B. Ca2+/calmodulin–dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl. Acad. Sci. USA 103, 13968–13973 (2006).

    Article  CAS  Google Scholar 

  22. Lucic, V., Greif, G.J. & Kennedy, M.B. Detailed state model of CaMKII activation and autophosphorylation. Eur. Biophys. J. 38, 83–98 (2008).

    Article  CAS  Google Scholar 

  23. Tombes, R.M., Faison, M.O. & Turbeville, J.M. Organization and evolution of multifunctional Ca2+/CaM–dependent protein kinase genes. Gene 322, 17–31 (2003).

    Article  CAS  Google Scholar 

  24. Bayer, K.U., De Koninck, P. & Schulman, H. Alternative splicing modulates the frequency-dependent response of CaMKII to Ca2+ oscillations. EMBO J. 21, 3590–3597 (2002).

    Article  CAS  Google Scholar 

  25. Zheng, J. et al. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci. 2, 1559–1573 (1993).

    Article  CAS  Google Scholar 

  26. Lowe, E.D. et al. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16, 6646–6658 (1997).

    Article  CAS  Google Scholar 

  27. Bayer, K.U., De Koninck, P., Leonard, A.S., Hell, J.W. & Schulman, H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411, 801–805 (2001).

    Article  CAS  Google Scholar 

  28. Liu, X.Y. et al. Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61, 425–438 (2009).

    Article  CAS  Google Scholar 

  29. Strack, S., McNeill, R.B. & Colbran, R.J. Mechanism and regulation of CaM kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. FASEB J. 14, A1578–A1578 (2000).

    Google Scholar 

  30. Kolb, S.J., Hudmon, A., Ginsberg, T.R. & Waxham, M.N. Identification of domains essential for the assembly of calcium/calmodulin–dependent protein kinase II holoenzymes. J. Biol. Chem. 273, 31555–31564 (1998).

    Article  CAS  Google Scholar 

  31. Shen, K. & Meyer, T. In vivo and in vitro characterization of the sequence requirement for oligomer formation of Ca2+/calmodulin–dependent protein kinase IIα. J. Neurochem. 70, 96–104 (1998).

    Article  CAS  Google Scholar 

  32. Knighton, D.R. et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414 (1991).

    Article  CAS  Google Scholar 

  33. Chang, B.H., Mukherji, S. & Soderling, T.R. Characterization of a calmodulin kinase II inhibitor protein in brain. Proc. Natl. Acad. Sci. USA 95, 10890–10895 (1998).

    Article  CAS  Google Scholar 

  34. Vest, R.S., Davies, K.D., O'Leary, H., Port, J.D. & Bayer, K.U. Dual mechanism of a natural CaMKII inhibitor. Mol. Biol. Cell 18, 5024–5033 (2007).

    Article  CAS  Google Scholar 

  35. Kolodziej, S.J., Hudmon, A., Waxham, M.N. & Stoops, J.K. Three-dimensional reconstructions of calcium/calmodulin–dependent (CaM) kinase IIalpha and truncated CaM kinase IIα reveal a unique organization for its structural core and functional domains. J. Biol. Chem. 275, 14354–14359 (2000).

    Article  CAS  Google Scholar 

  36. Morris, E.P. & Torok, K. Oligomeric structure of α-calmodulin-dependent protein kinase II. J. Mol. Biol. 308, 1–8 (2001).

    Article  CAS  Google Scholar 

  37. Thaler, C., Koushik, S.V., Puhl, H.L. III, Blank, P.S. & Vogel, S.S. Structural rearrangement of CaMKIIα catalytic domains encodes activation. Proc. Natl. Acad. Sci. USA 106, 6369–6374 (2009).

    Article  CAS  Google Scholar 

  38. Lee, S.J., Escobedo-Lozoya, Y., Szatmari, E.M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    Article  CAS  Google Scholar 

  39. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  40. Chang, B.H., Mukherji, S. & Soderling, T.R. Calcium/calmodulin–dependent protein kinase II inhibitor protein: localization of isoforms in rat brain. Neuroscience 102, 767–777 (2001).

    Article  CAS  Google Scholar 

  41. Seeliger, M.A. et al. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci. 14, 3135–3139 (2005).

    Article  CAS  Google Scholar 

  42. Putkey, J.A. & Waxham, M.N. A peptide model for calmodulin trapping by calcium/calmodulin–dependent protein kinase II. J. Biol. Chem. 271, 29619–29623 (1996).

    Article  CAS  Google Scholar 

  43. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  44. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  45. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  46. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  47. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  48. Barker, S.C. et al. Characterization of pp60c-src tyrosine kinase activities using a continuous assay: autoactivation of the enzyme is an intermolecular autophosphorylation process. Biochemistry 34, 14843–14851 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. King for generous assistance with synthesis of peptides and MS, A.C. Nairn, A. Hoelz, O.S. Rosenberg, J.A. Winger and members of the Kuriyan laboratory for helpful discussions, P.R. Visperas and X. Cao for technical assistance, J. Dixon (University of California, San Diego) for the kind gift of λ phosphatase vector, C. Ralston and the staff at Advanced Light Source beamline 8.2.2 for their assistance with data collection and M.A. Seeliger, N. Jura, J. Gureasko and J. S. Iwig for critical reading of the manuscript. The Advanced Light Source is supported by the US Department of Energy under contract DE-AC03-76SF00098 at the Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

L.H.C., P.P., H.S. and J.K. designed the experiments; L.H.C., P.P. and L.A.B. performed the experiments and analyzed the data; S.D. performed the Hill coefficient analyses; L.H.C. and J.K. wrote the paper.

Corresponding author

Correspondence to John Kuriyan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Discussion and Supplementary Figures 1–3 (PDF 6198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, L., Pellicena, P., Deindl, S. et al. Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation. Nat Struct Mol Biol 17, 264–272 (2010). https://doi.org/10.1038/nsmb.1751

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1751

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing