Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of an intramolecular chaperone mediating triple–β-helix folding

Abstract

Protein folding is often mediated by molecular chaperones. Recently, a novel class of intramolecular chaperones has been identified in tailspike proteins of evolutionarily distant viruses, which require a C-terminal chaperone for correct folding. The highly homologous chaperone domains are interchangeable between pre-proteins and release themselves after protein folding. Here we report the crystal structures of two intramolecular chaperone domains in either the released or the pre-cleaved form, revealing the role of the chaperone domain in the formation of a triple–β-helix fold. Tentacle-like protrusions enclose the polypeptide chains of the pre-protein during the folding process. After the assembly, a sensory mechanism for correctly folded β-helices triggers a serine-lysine catalytic dyad to autoproteolytically release the mature protein. Sequence analysis shows a conservation of the intramolecular chaperones in functionally unrelated proteins sharing β-helices as a common structural motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of GP12-CIMCD.
Figure 2: Structure of pre-cleavage endoNF-CIMCD.
Figure 3: EndoNF before cleavage.
Figure 4: Biochemical characterization of the cleavage mechanism.
Figure 5: Comparison to other clamp-like binding proteins.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  2. Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding. Protein Sci. 6, 743–760 (1997).

    Article  CAS  Google Scholar 

  3. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    Article  CAS  Google Scholar 

  4. Chen, Y.J. & Inouye, M. The intramolecular chaperone-mediated protein folding. Curr. Opin. Struct. Biol. 18, 765–770 (2008).

    Article  CAS  Google Scholar 

  5. Mühlenhoff, M., Stummeyer, K., Grove, M., Sauerborn, M. & Gerardy-Schahn, R. Proteolytic processing and oligomerization of bacteriophage-derived endosialidases. J. Biol. Chem. 278, 12634–12644 (2003).

    Article  Google Scholar 

  6. Schwarzer, D., Stummeyer, K., Gerardy-Schahn, R. & Muhlenhoff, M. Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J. Biol. Chem. 282, 2821–2831 (2007).

    Article  CAS  Google Scholar 

  7. Stummeyer, K., Dickmanns, A., Muhlenhoff, M., Gerardy-Schahn, R. & Ficner, R. Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat. Struct. Mol. Biol. 12, 90–96 (2005).

    Article  CAS  Google Scholar 

  8. Weigele, P.R., Scanlon, E. & King, J. Homotrimeric, β-stranded viral adhesins and tail proteins. J. Bacteriol. 185, 4022–4030 (2003).

    Article  CAS  Google Scholar 

  9. Kajava, A.V. & Steven, A.C. β-rolls, β-helices, and other β-solenoid proteins. Adv. Protein Chem. 73, 55–96 (2006).

    Article  CAS  Google Scholar 

  10. Papanikolopoulou, K. et al. Amyloid fibril formation from sequences of a natural β-structured fibrous protein, the adenovirus fiber. J. Biol. Chem. 280, 2481–2490 (2005).

    Article  CAS  Google Scholar 

  11. Mitraki, A., Papanikolopoulou, K. & Van Raaij, M.J. Natural triple β-stranded fibrous folds. Adv. Protein Chem. 73, 97–124 (2006).

    Article  CAS  Google Scholar 

  12. Oinonen, C. & Rouvinen, J. Structural comparison of Ntn-hydrolases. Protein Sci. 9, 2329–2337 (2000).

    Article  CAS  Google Scholar 

  13. Slilaty, S.N. & Vu, H.K. The role of electrostatic interactions in the mechanism of peptide bond hydrolysis by a Ser-Lys catalytic dyad. Protein Eng. 4, 919–922 (1991).

    Article  CAS  Google Scholar 

  14. Dao-pin, S., Anderson, D.E., Baase, W.A., Dahlquist, F.W. & Matthews, B.W. Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry 30, 11521–11529 (1991).

    Article  CAS  Google Scholar 

  15. Lin, L.L. & Little, J.W. Autodigestion and RecA-dependent cleavage of Ind- mutant LexA proteins. J. Mol. Biol. 210, 439–452 (1989).

    Article  CAS  Google Scholar 

  16. Papanikolopoulou, K., Forge, V., Goeltz, P. & Mitraki, A. Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage t4 fibritin. J. Biol. Chem. 279, 8991–8998 (2004).

    Article  CAS  Google Scholar 

  17. Papanikolopoulou, K. et al. Adenovirus fibre shaft sequences fold into the native triple β-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif. J. Mol. Biol. 342, 219–227 (2004).

    Article  CAS  Google Scholar 

  18. van Raaij, M.J., Mitraki, A., Lavigne, G. & Cusack, S. A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935–938 (1999).

    Article  CAS  Google Scholar 

  19. Barbirz, S. et al. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol. Microbiol. 69, 303–316 (2008).

    Article  CAS  Google Scholar 

  20. Müller, J.J. et al. An intersubunit active site between supercoiled parallel β helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 16, 766–775 (2008).

    Article  Google Scholar 

  21. Steinbacher, S. et al. Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnosidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage. J. Mol. Biol. 267, 865–880 (1997).

    Article  CAS  Google Scholar 

  22. Steinbacher, S. et al. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    Article  CAS  Google Scholar 

  23. Xiang, Y. et al. Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol. Cell 34, 375–386 (2009).

    Article  Google Scholar 

  24. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).

    Article  CAS  Google Scholar 

  25. Siegert, R., Leroux, M.R., Scheufler, C., Hartl, F.U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621–632 (2000).

    Article  CAS  Google Scholar 

  26. Korndörfer, I.P., Dommel, M.K. & Skerra, A. Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat. Struct. Mol. Biol. 11, 1015–1020 (2004).

    Article  Google Scholar 

  27. Stirling, P.C., Bakhoum, S.F., Feigl, A.B. & Leroux, M.R. Convergent evolution of clamp-like binding sites in diverse chaperones. Nat. Struct. Mol. Biol. 13, 865–870 (2006).

    Article  CAS  Google Scholar 

  28. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  29. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  30. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  Google Scholar 

  31. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).

    Article  CAS  Google Scholar 

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  33. Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004).

    Article  CAS  Google Scholar 

  34. Terwilliger, T.C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    Article  CAS  Google Scholar 

  35. Zwart, P.H. et al. Automated structure solution with the PHENIX suite. Methods Mol. Biol. 426, 419–435 (2008).

    Article  CAS  Google Scholar 

  36. Lebedev, A.A., Vagin, A.A. & Murshudov, G.N. Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr. D Biol. Crystallogr. 64, 33–39 (2008).

    Article  CAS  Google Scholar 

  37. McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).

    Article  CAS  Google Scholar 

  38. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  39. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  40. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the beamline staff scientists of European Synchrotron Radiation Facility, Dr. P. Tucker from the European Molecular Biology Laboratory for outstanding support during data collection at the Deutsches Elektronen Synchrotron and D. Gloth and J. Warweg for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

E.-C.S. performed molecular cloning, protein purification and crystallization, data collection, integration and refinement, data analysis and writing of the manuscript; A.D., sequence comparison and alignments and writing of the manuscript; H.U., MS analysis; A.S., molecular cloning; M.M., K.S., D.S., feedback on the manuscript; R.G.-S., initiator of the project; R.F., data analysis, writing of the manuscript and acted as project leader.

Corresponding author

Correspondence to Ralf Ficner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 5784 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, E., Dickmanns, A., Urlaub, H. et al. Crystal structure of an intramolecular chaperone mediating triple–β-helix folding. Nat Struct Mol Biol 17, 210–215 (2010). https://doi.org/10.1038/nsmb.1746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing