Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy

Abstract

The common form of myotonic dystrophy (DM1) is associated with the expression of expanded CTG DNA repeats as RNA (CUGexp RNA). To test whether CUGexp RNA creates a global splicing defect, we compared the skeletal muscle of two mouse models of DM1, one expressing a CTGexp transgene and another homozygous for a defective muscleblind 1 (Mbnl1) gene. Strong correlation in splicing changes for 100 new Mbnl1-regulated exons indicates that loss of Mbnl1 explains >80% of the splicing pathology due to CUGexp RNA. In contrast, only about half of mRNA-level changes can be attributed to loss of Mbnl1, indicating that CUGexp RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix proteins. We propose that CUGexp RNA causes two separate effects: loss of Mbnl1 function (disrupting splicing) and loss of another function that disrupts extracellular matrix mRNA regulation, possibly mediated by Mbnl2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of splicing perturbation in the two mouse models.
Figure 2: RNA motifs found by bioinformatics analysis near exons altered in the mouse models.
Figure 3: YGCY motifs mediate Mbnl1-dependent splicing repression and activation.
Figure 4: Test of humans with DM1 for splicing perturbations newly predicted from mouse model microarray data.
Figure 5: Comparison of altered mRNA levels in the two mouse models.
Figure 6: ECM proteins whose mRNA levels are altered by CUGexp RNA expression.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Mirkin, S.M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    Article  CAS  Google Scholar 

  2. Caskey, C.T., Pizzuti, A., Fu, Y.H., Fenwick, R.G. Jr. & Nelson, D.L. Triplet repeat mutations in human disease. Science 256, 784–789 (1992).

    Article  CAS  Google Scholar 

  3. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).

    Article  CAS  Google Scholar 

  4. Taneja, K.L., McCurrach, M., Schalling, M., Housman, D. & Singer, R.H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell. Biol. 128, 995–1002 (1995).

    Article  CAS  Google Scholar 

  5. Mankodi, A., Lin, X., Blaxall, B.C., Swanson, M.S. & Thornton, C.A. Nuclear RNA foci in the heart in myotonic dystrophy. Circ. Res. 97, 1152–1155 (2005).

    Article  CAS  Google Scholar 

  6. Orengo, J.P. et al. Expanded CTG repeats within the DMPK 3′ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy. Proc. Natl. Acad. Sci. USA 105, 2646–2651 (2008).

    Article  CAS  Google Scholar 

  7. Mankodi, A. et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773 (2000).

    Article  CAS  Google Scholar 

  8. Ebralidze, A., Wang, Y., Petkova, V., Ebralidse, K. & Junghans, R.P. RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science 303, 383–387 (2004).

    Article  CAS  Google Scholar 

  9. Krol, J. et al. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol. Cell 25, 575–586 (2007).

    Article  CAS  Google Scholar 

  10. Kuyumcu-Martinez, N.M., Wang, G.S. & Cooper, T.A. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol. Cell 28, 68–78 (2007).

    Article  CAS  Google Scholar 

  11. Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087–2097 (2006).

    Article  CAS  Google Scholar 

  12. Lueck, J.D., Mankodi, A., Swanson, M.S., Thornton, C.A. & Dirksen, R.T. Muscle chloride channel dysfunction in two mouse models of myotonic dystrophy. J. Gen. Physiol. 129, 79–94 (2007).

    Article  CAS  Google Scholar 

  13. Charlet, B.N. et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell 10, 45–53 (2002).

    Article  Google Scholar 

  14. Lueck, J.D. et al. Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1. Am. J. Physiol. Cell Physiol. 292, C1291–C1297 (2007).

    Article  CAS  Google Scholar 

  15. Wheeler, T.M., Lueck, J.D., Swanson, M.S., Dirksen, R.T. & Thornton, C.A. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J. Clin. Invest. 117, 3952–3957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Savkur, R.S., Philips, A.V. & Cooper, T.A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29, 40–47 (2001).

    Article  CAS  Google Scholar 

  17. Miller, J.W. et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article  CAS  Google Scholar 

  18. Warf, M.B. & Berglund, J.A. MBNL binds similar RNA structures in the CUG repeats of myotonic dystrophy and its pre-mRNA substrate cardiac troponin T. RNA 13, 2238–2251 (2007).

    Article  CAS  Google Scholar 

  19. Begemann, G. et al. muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development 124, 4321–4331 (1997).

    CAS  PubMed  Google Scholar 

  20. Teplova, M. & Patel, D.J. Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Nat. Struct. Mol. Biol. 15, 1343–1351 (2008).

    Article  CAS  Google Scholar 

  21. Ho, T.H. et al. Muscleblind proteins regulate alternative splicing. EMBO J. 23, 3103–3112 (2004).

    Article  CAS  Google Scholar 

  22. Mooers, B.H., Logue, J.S. & Berglund, J.A. The structural basis of myotonic dystrophy from the crystal structure of CUG repeats. Proc. Natl. Acad. Sci. USA 102, 16626–16631 (2005).

    Article  CAS  Google Scholar 

  23. Paul, S. et al. Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J. 25, 4271–4283 (2006).

    Article  CAS  Google Scholar 

  24. Timchenko, N.A. et al. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J. Biol. Chem. 276, 7820–7826 (2001).

    Article  CAS  Google Scholar 

  25. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl. Acad. Sci. USA 105, 20333–20338 (2008).

    Article  CAS  Google Scholar 

  26. Kim, D.H. et al. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic Acids Res. 33, 3866–3874 (2005).

    Article  CAS  Google Scholar 

  27. Kanadia, R.N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  Google Scholar 

  28. Kanadia, R.N. et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc. Natl. Acad. Sci. USA 103, 11748–11753 (2006).

    Article  CAS  Google Scholar 

  29. Sugnet, C.W. et al. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLOS Comput. Biol. 2, e4 (2006).

    Article  Google Scholar 

  30. Ni, J.Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).

    Article  CAS  Google Scholar 

  31. Fardaei, M. et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum. Mol. Genet. 11, 805–814 (2002).

    Article  CAS  Google Scholar 

  32. Holt, I. et al. Muscleblind-like proteins: similarities and differences in normal and myotonic dystrophy muscle. Am. J. Pathol. 174, 216–227 (2009).

    Article  CAS  Google Scholar 

  33. Hino, S. et al. Molecular mechanisms responsible for aberrant splicing of SERCA1 in myotonic dystrophy type 1. Hum. Mol. Genet. 16, 2834–2843 (2007).

    Article  CAS  Google Scholar 

  34. Yuan, Y. et al. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res. 35, 5474–5486 (2007).

    Article  CAS  Google Scholar 

  35. Hsu, F. et al. The UCSC known genes. Bioinformatics 22, 1036–1046 (2006).

    Article  CAS  Google Scholar 

  36. Lejeune, F. & Maquat, L.E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr. Opin. Cell Biol. 17, 309–315 (2005).

    Article  CAS  Google Scholar 

  37. Wheeler, T.M. et al. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325, 336–339 (2009).

    Article  CAS  Google Scholar 

  38. Zeeberg, B.R. et al. High-Throughput GoMiner, an ′industrial-strength′ integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID). BMC Bioinformatics 6, 168 (2005).

    Article  Google Scholar 

  39. He, F. et al. Solution structure of the RNA binding domain in the human muscleblind-like protein 2. Protein Sci. 18, 80–91 (2009).

    Article  CAS  Google Scholar 

  40. Adereth, Y., Dammai, V., Kose, N., Li, R. & Hsu, T. RNA-dependent integrin α3 protein localization regulated by the Muscleblind-like protein MLP1. Nat. Cell Biol. 7, 1240–1247 (2005).

    Article  Google Scholar 

  41. Jiang, H., Mankodi, A., Swanson, M.S., Moxley, R.T. & Thornton, C.A. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum. Mol. Genet. 13, 3079–3088 (2004).

    Article  CAS  Google Scholar 

  42. Hao, M. et al. Muscleblind-like 2 (Mbnl2)-deficient mice as a model for myotonic dystrophy. Dev. Dyn. 237, 403–410 (2008).

    Article  CAS  Google Scholar 

  43. Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44 (2002).

    Article  CAS  Google Scholar 

  44. Xu, X. et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72 (2005).

    Article  CAS  Google Scholar 

  45. Lee, S.J. et al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl. Acad. Sci. USA 102, 18117–18122 (2005).

    Article  CAS  Google Scholar 

  46. Kanagawa, M. & Toda, T. The genetic and molecular basis of muscular dystrophy: roles of cell-matrix linkage in the pathogenesis. J. Hum. Genet. 51, 915–926 (2006).

    Article  CAS  Google Scholar 

  47. Jimenez-Mallebrera, C., Brown, S.C., Sewry, C.A. & Muntoni, F. Congenital muscular dystrophy: molecular and cellular aspects. Cell. Mol. Life Sci. 62, 809–823 (2005).

    Article  CAS  Google Scholar 

  48. Schessl, J., Zou, Y. & Bonnemann, C.G. Congenital muscular dystrophies and the extracellular matrix. Semin. Pediatr. Neurol. 13, 80–89 (2006).

    Article  Google Scholar 

  49. Engelbert, R.H. et al. Osteogenesis imperfecta in childhood: impairment and disability. A prospective study with 4-year follow-up. Arch. Phys. Med. Rehabil. 85, 772–778 (2004).

    Article  Google Scholar 

  50. Ishikawa, H. et al. Ullrich disease due to deficiency of collagen VI in the sarcolemma. Neurology 62, 620–623 (2004).

    Article  CAS  Google Scholar 

  51. Eklund, L. et al. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc. Natl. Acad. Sci. USA 98, 1194–1199 (2001).

    Article  CAS  Google Scholar 

  52. Behan, W.M. et al. Muscle fibrillin deficiency in Marfan′s syndrome myopathy. J. Neurol. Neurosurg. Psychiatry 74, 633–638 (2003).

    Article  CAS  Google Scholar 

  53. Percheron, G. et al. Muscle strength and body composition in adult women with Marfan syndrome. Rheumatology (Oxford) 46, 957–962 (2007).

    Article  CAS  Google Scholar 

  54. Stone, E.M. et al. Missense variations in the fibulin 5 gene and age-related macular degeneration. N. Engl. J. Med. 351, 346–353 (2004).

    Article  CAS  Google Scholar 

  55. Lotery, A.J. et al. Reduced secretion of fibulin 5 in age-related macular degeneration and cutis laxa. Hum. Mutat. 27, 568–574 (2006).

    Article  CAS  Google Scholar 

  56. Morellini, F. & Schachner, M. Enhanced novelty-induced activity, reduced anxiety, delayed resynchronization to daylight reversal and weaker muscle strength in tenascin-C-deficient mice. Eur. J. Neurosci. 23, 1255–1268 (2006).

    Article  Google Scholar 

  57. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  58. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  59. Dominski, Z. & Kole, R. Selection of splice sites in pre-mRNAs with short internal exons. Mol. Cell. Biol. 11, 6075–6083 (1991).

    Article  CAS  Google Scholar 

  60. Hanahan, D., Lane, D., Lipsich, L., Wigler, M. & Botchan, M. Characteristics of an SV40-plasmid recombinant and its movement into and out of the genome of a murine cell. Cell 21, 127–139 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Black (Univ. of California, Los Angeles) and X.-D. Fu (Univ. of California, San Diego) for gifts of plasmids and advice on mammalian cell culture. Thanks to B. Chabot and J. Sanford for critical reading of the manuscript. This work was primarily supported by US National Institutes of Health grant GM084317 to M.A., with additional support from US National Institutes of Health grant GM040478 (to M.A.), US National Institutes of Health grant AR046799 (to M.S.S.) and US National Institutes of Health grant AR046806 and Muscular Dystrophy Center grant U54NS048843 (to C.A.T.). M.P.H. acknowledges the California Institute of Regenerative Medicine for postdoctoral support.

Author information

Authors and Affiliations

Authors

Contributions

M.A., H.D., M.S.S. and C.A.T. designed the experiments; H.D., R.J.O., D.L.T. and M.P.H. performed the experiments; T.A.C. provided materials and data analysis; M.S.C., J.P.D. and L.S. performed data analysis; M.A., H.D. and M.S.C. wrote the paper.

Corresponding author

Correspondence to Manuel Ares Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–9 (PDF 1345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H., Cline, M., Osborne, R. et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat Struct Mol Biol 17, 187–193 (2010). https://doi.org/10.1038/nsmb.1720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing