Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlated conformational events in EF-G and the ribosome regulate translocation

Abstract

In bacteria, the translocation of tRNA and mRNA with respect to the ribosome is catalyzed by the conserved GTPase elongation factor-G (EF-G). To probe the rate-determining features in this process, we imaged EF-G–catalyzed translocation from two unique structural perspectives using single-molecule fluorescence resonance energy transfer. The data reveal that the rate at which the ribosome spontaneously achieves a transient, 'unlocked' state is closely correlated with the rate at which the tRNA-like domain IV-V element of EF-G engages the A site. After these structural transitions, translocation occurs comparatively fast, suggesting that conformational processes intrinsic to the ribosome determine the rate of translocation. Experiments conducted in the presence of non-hydrolyzable GTP analogs and specific antibiotics further reveal that allosterically linked conformational events in EF-G and the ribosome mediate rapid, directional substrate movement and EF-G release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural models of the ribosome and EF-G.
Figure 2: Observation of the translocation reaction from two unique structural perspectives.
Figure 3: The kinetics of unlocked-state formation and decay and EF-G–ribosome interactions are correlated.
Figure 4: A step-like increase in Cy3 fluorescence accompanies peptidyl-tRNA movement to the P site.
Figure 5: Translocation in the presence of inhibitors.
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Agirrezabala, X. & Frank, J. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q. Rev. Biophys. 42, 159–200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shoji, S., Walker, S.E. & Fredrick, K. Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem. Biol. 4, 93–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wintermeyer, W. et al. Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. Biochem. Soc. Trans. 32, 733–737 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Fredrick, K. & Noller, H. Catalysis of ribosomal translocation by sparsomycin. Science 300, 1159–1162 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Cukras, A.R., Southworth, D.R., Brunelle, J.L., Culver, G.M. & Green, R. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex. Mol. Cell 12, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Gavrilova, L.P., Kostiashkina, O.E., Koteliansky, V.E., Rutkevitch, N.M. & Spirin, A.S. Factor-free (“non-enzymic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J. Mol. Biol. 101, 537–552 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Bergemann, K. & Nierhaus, K.H. Spontaneous, elongation factor G independent translocation of Escherichia coli ribosomes. J. Biol. Chem. 258, 15105–15113 (1983).

    CAS  PubMed  Google Scholar 

  8. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Julián, P. et al. Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc. Natl. Acad. Sci. USA 105, 16924–16927 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fei, J., Kosuri, P., MacDougall, D.D. & Gonzalez, R.L. Jr. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Cornish, P.V., Ermolenko, D.N., Noller, H.F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cornish, P.V. et al. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl. Acad. Sci. USA 106, 2571–2576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Munro, J.B. et al. Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc. Natl. Acad. Sci. USA 107, 709–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Munro, J.B., Altman, R.B., Tung, C.S., Sanbonmatsu, K.Y. & Blanchard, S.C. A fast dynamic mode of the EF-G-bound ribosome. EMBO J (2010).

  15. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanchard, S.C., Kim, H.D., Gonzalez, R.L. Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Katunin, V.I., Savelsbergh, A., Rodnina, M.V. & Wintermeyer, W. Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry 41, 12806–12812 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Modolell, J. & Vazquez, D. The inhibition of ribosomal translocation by viomycin. Eur. J. Biochem. 81, 491–497 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Walker, S.E., Shoji, S., Pan, D., Cooperman, B.S. & Fredrick, K. Role of hybrid tRNA-binding states in ribosomal translocation. Proc. Natl. Acad. Sci. USA 105, 9192–9197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Connell, S.R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Stark, H., Rodnina, M.V., Wieden, H.J., van Heel, M. & Wintermeyer, W. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100, 301–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Ticu, C., Nechifor, R., Nguyen, B., Desrosiers, M. & Wilson, K.S. Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J. 28, 2053–2065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peske, F., Matassova, N.B., Savelsbergh, A., Rodnina, M.V. & Wintermeyer, W. Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Mol. Cell 6, 501–505 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Pan, D., Kirillov, S. & Cooperman, B.S. Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25, 519–529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Studer, S.M., Feinberg, J.S. & Joseph, S. Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome. J. Mol. Biol. 327, 369–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Dorner, S., Brunelle, J.L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat. Struct. Mol. Biol. 13, 234–241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, Z. et al. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 2, 337–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Yin, J., Lin, A.J., Golan, D.E. & Walsh, C.T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wen, J.D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Johansen, S.K., Maus, C.E., Plikaytis, B.B. & Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell 23, 173–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Ermolenko, D.N. et al. The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat. Struct. Mol. Biol. 14, 493–497 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Feldman, M.B., Terry, D.S., Altman, R.B. & Blanchard, S.C. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat. Chem. Biol. 6, 54–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodnina, M.V. et al. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc. Natl. Acad. Sci. USA 96, 9586–9590 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bodley, J.W., Zieve, F.J., Lin, L. & Zieve, S.T. Formation of the ribosome–G factor–GDP complex in the presence of fusidic acid. Biochem. Biophys. Res. Commun. 37, 437–443 (1969).

    Article  CAS  PubMed  Google Scholar 

  44. Inoue-Yokosawa, N., Ishikawa, C. & Kaziro, Y. The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G. J. Biol. Chem. 249, 4321–4323 (1974).

    CAS  PubMed  Google Scholar 

  45. Wang, Y. et al. Single-molecule structural dynamics of EF-G–ribosome interaction during translocation. Biochemistry 46, 10767–10775 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Zavialov, A.V. & Ehrenberg, M. Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114, 113–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Borovinskaya, M.A., Shoji, S., Holton, J.M., Fredrick, K. & Cate, J.H.D. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem. Biol. 2, 545–552 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilson, D.N. The A-Z of bacterial translation inhibitors. Crit. Rev. Biochem. Mol. Biol. 44, 393–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Munro, J.B., Sanbonmatsu, K.Y., Spahn, C.M. & Blanchard, S.C. Navigating the ribosome's metastable energy landscape. Trends Biochem. Sci. 34, 390–400 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aitken, C.E., Marshall, R.A. & Puglisi, J.D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dave, R., Terry, D.S., Munro, J.B. & Blanchard, S.C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 96, 2371–2381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Walsh (Harvard University) and members of his laboratory for providing the Sfp expression vector and for their assistance with the fluorescent labeling of EF-G and K.Y. Sanbonmatsu and P. Whitford for structural models of the E. coli ribosome. This work was supported by US National Institutes of Health grant GM079238.

Author information

Authors and Affiliations

Authors

Contributions

J.B.M. and S.C.B. designed the experiments. J.B.M. and M.R.W. conducted the experiments and analyzed the data. R.B.A. and L.W. prepared reagents. J.B.M., M.R.W., R.B.A. and S.C.B. wrote the paper.

Corresponding author

Correspondence to Scott C Blanchard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–3 (PDF 2357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munro, J., Wasserman, M., Altman, R. et al. Correlated conformational events in EF-G and the ribosome regulate translocation. Nat Struct Mol Biol 17, 1470–1477 (2010). https://doi.org/10.1038/nsmb.1925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1925

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology