Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for cooperative RNA binding and export complex assembly by HIV Rev

Abstract

HIV replication requires nuclear export of unspliced viral RNAs to translate structural proteins and package genomic RNA. Export is mediated by cooperative binding of the Rev protein to the Rev response element (RRE) RNA, to form a highly specific oligomeric ribonucleoprotein (RNP) that binds to the Crm1 host export factor. To understand how protein oligomerization generates cooperativity and specificity for RRE binding, we solved the crystal structure of a Rev dimer at 2.5-Å resolution. The dimer arrangement organizes arginine-rich helices at the ends of a V-shaped assembly to bind adjacent RNA sites and structurally couple dimerization and RNA recognition. A second protein-protein interface arranges higher-order Rev oligomers to act as an adaptor to the host export machinery, with viral RNA bound to one face and Crm1 to another, the oligomers thereby using small, interconnected modules to physically arrange the RNP for efficient export.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rev domain structure and protein dimerization.
Figure 2: Overall structure of the Rev dimer and monomer.
Figure 3: The Rev dimer interface mediates cooperative RNA recognition.
Figure 4: Arrangement of the Rev oligomer and model of the Rev–RRE RNP and Crm1 interaction.
Figure 5: Model for oligomerization-mediated cooperative assembly.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Cullen, B.R. Nuclear mRNA export: insights from virology. Trends Biochem. Sci. 28, 419–424 (2003).

    Article  CAS  Google Scholar 

  2. Pollard, V.W. & Malim, M.H. The HIV-1 Rev Protein. Annu. Rev. Microbiol. 52, 491–532 (1998).

    Article  CAS  Google Scholar 

  3. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I.W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    Article  CAS  Google Scholar 

  4. Malim, M.H. & Cullen, B.R. HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell 65, 241–248 (1991).

    Article  CAS  Google Scholar 

  5. Mann, D.A. et al. A molecular rheostat: Co-operative rev binding to stem I of the Rev-response element modulates human immunodeficiency virus type-1 late gene expression. J. Mol. Biol. 241, 193–207 (1994).

    Article  CAS  Google Scholar 

  6. Daugherty, M.D., D'Orso, I. & Frankel, A.D. A solution to limited genomic capacity: using adaptable binding surfaces to assemble the functional HIV Rev oligomer on RNA. Mol. Cell 31, 824–834 (2008).

    Article  CAS  Google Scholar 

  7. Daugherty, M.D., Booth, D.S., Jayaraman, B., Cheng, Y. & Frankel, A.D. HIV Rev response element (RRE) directs assembly of the Rev homooligomer into discrete asymmetric complexes. Proc. Natl. Acad. Sci. USA 107, 12481–12486 (2010).

    Article  CAS  Google Scholar 

  8. Cook, K.S. et al. Characterization of HIV-1 REV protein: binding stoichiometry and minimal RNA substrate. Nucleic Acids Res. 19, 1577–1583 (1991).

    Article  CAS  Google Scholar 

  9. Heaphy, S. et al. HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region. Cell 60, 685–693 (1990).

    Article  CAS  Google Scholar 

  10. Malim, M.H. et al. HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 60, 675–683 (1990).

    Article  CAS  Google Scholar 

  11. Kjems, J., Brown, M., Chang, D.D. & Sharp, P.A. Structural analysis of the interaction between the human immunodeficiency virus Rev protein and the Rev response element. Proc. Natl. Acad. Sci. USA 88, 683–687 (1991).

    Article  CAS  Google Scholar 

  12. Heaphy, S., Finch, J.T., Gait, M.J., Karn, J. & Singh, M. Human immunodeficiency virus type 1 regulator of virion expression, rev, forms nucleoprotein filaments after binding to a purine-rich “bubble” located within the rev-responsive region of viral mRNAs. Proc. Natl. Acad. Sci. USA 88, 7366–7370 (1991).

    Article  CAS  Google Scholar 

  13. Pond, S.J., Ridgeway, W.K., Robertson, R., Wang, J. & Millar, D.P. HIV-1 Rev protein assembles on viral RNA one molecule at a time. Proc. Natl. Acad. Sci. USA 106, 1404–1408 (2009).

    Article  CAS  Google Scholar 

  14. Battiste, J.L. et al. Alpha helix-RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex. Science 273, 1547–1551 (1996).

    Article  CAS  Google Scholar 

  15. Xu, W. & Ellington, A.D. Anti-peptide aptamers recognize amino acid sequence and bind a protein epitope. Proc. Natl. Acad. Sci. USA 93, 7475–7480 (1996).

    Article  CAS  Google Scholar 

  16. Bayer, T.S., Booth, L.N., Knudsen, S.M. & Ellington, A.D. Arginine-rich motifs present multiple interfaces for specific binding by RNA. RNA 11, 1848–1857 (2005).

    Article  CAS  Google Scholar 

  17. Landt, S.G., Ramirez, A., Daugherty, M.D. & Frankel, A.D. A simple motif for protein recognition in DNA secondary structures. J. Mol. Biol. 351, 982–994 (2005).

    Article  CAS  Google Scholar 

  18. Zemmel, R.W., Kelley, A.C., Karn, J. & Butler, P.J. Flexible regions of RNA structure facilitate co-operative Rev assembly on the Rev-response element. J. Mol. Biol. 258, 763–777 (1996).

    Article  CAS  Google Scholar 

  19. Jain, C. & Belasco, J.G. Structural model for the cooperative assembly of HIV-1 Rev multimers on the RRE as deduced from analysis of assembly-defective mutants. Mol. Cell 7, 603–614 (2001).

    Article  CAS  Google Scholar 

  20. DiMattia, M.A. et al. Implications of the HIV-1 Rev dimer structure at 3.2 A resolution for multimeric binding to the Rev response element. Proc. Natl. Acad. Sci. USA 107, 5810–5814 (2010).

    Article  CAS  Google Scholar 

  21. Auer, M. et al. Helix-loop-helix motif in HIV-1 Rev. Biochemistry 33, 2988–2996 (1994).

    Article  CAS  Google Scholar 

  22. Edgcomb, S.P. et al. Protein structure and oligomerization are important for the formation of export-competent HIV-1 Rev-RRE complexes. Protein Sci. 17, 420–430 (2008).

    Article  CAS  Google Scholar 

  23. Vallone, B., Miele, A.E., Vecchini, P., Chiancone, E. & Brunori, M. Free energy of burying hydrophobic residues in the interface between protein subunits. Proc. Natl. Acad. Sci. USA 95, 6103–6107 (1998).

    Article  CAS  Google Scholar 

  24. Williamson, J.R. Cooperativity in macromolecular assembly. Nat. Chem. Biol. 4, 458–465 (2008).

    Article  CAS  Google Scholar 

  25. Khorasanizadeh, S. & Rastinejad, F. Nuclear-receptor interactions on DNA-response elements. Trends Biochem. Sci. 26, 384–390 (2001).

    Article  CAS  Google Scholar 

  26. Hong, M. et al. Structural basis for dimerization in DNA recognition by Gal4. Structure 16, 1019–1026 (2008).

    Article  CAS  Google Scholar 

  27. Chen, L., Glover, J.N., Hogan, P.G., Rao, A. & Harrison, S.C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48 (1998).

    Article  CAS  Google Scholar 

  28. Lesk, A.M. & Chothia, C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J. Mol. Biol. 136, 225–270 (1980).

    Article  CAS  Google Scholar 

  29. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  30. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  Google Scholar 

  31. Monecke, T. et al. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324, 1087–1091 (2009).

    Article  CAS  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  33. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  34. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  35. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  37. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  38. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35 (Web Server issue), W375–W383 (2007).

    Article  Google Scholar 

  39. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  40. Delano, W.L. The PyMOL molecular graphics system, v.0.99 (Delano Scientific, Palo Alto, California, USA, 2006).

Download references

Acknowledgements

We are grateful for assistance with crystallography and structure determination from Z. Newby, P. Egea, J. Finer-Moore, R. Stroud, M. Pufall, J.J. Miranda, D.Y. Kim, B. Kaiser, M. Brewer, L. Beamer, J. Holton and G. Meigs. We also thank D. Booth, B. Jayaraman, John Gross, Y. Cheng, R. Andino, G. Narlikar and H. Malik for helpful discussions and critical reading of the manuscript. M.D.D. was supported by a Howard Hughes Medical Institute predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.D.D. and A.D.F. designed experiments and analyzed data. M.D.D. conducted RNA-binding and SEC experiments. M.D.D. and B.L. purified and crystallized Rev and collected diffraction data. M.D.D. solved and refined the structure. M.D.D. and A.D.F. wrote the manuscript.

Corresponding author

Correspondence to Alan D Frankel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 1585 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daugherty, M., Liu, B. & Frankel, A. Structural basis for cooperative RNA binding and export complex assembly by HIV Rev. Nat Struct Mol Biol 17, 1337–1342 (2010). https://doi.org/10.1038/nsmb.1902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing