Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 17 Issue 10, October 2010

pp 1260–1262pp 1263–1265 Corrigendum 12 October 2010 In the description of the cover image originally published, credit for the original image was attributed incorrectly. The correct attribution should read, “Cover art by Marian Miller and Jack Griffith.” This error has been corrected for the online PDF and HTML versions of the caption.

Editorial

  • A picture may be worth a thousand words, but ensuring that those words make sense is important, especially in the context of a scientific figure. Here are some tips for making your figures count.

    Editorial

    Advertisement

Top of page ⤴

News & Views

  • The N-end rule pathway is a proteolytic system in which recognition components (N-recognins) recognize a set of N-terminal residues as part of degradation signals (N-degrons). Two studies in this issue report the structures of Ubr boxes, a substrate recognition domain of eukaryotic N-recognins. We discuss how eukaryotic and prokaryotic N-recognins use a similar molecular principle to recognize a different set of N-degrons.

    • Shashikanth M Sriram
    • Yong Tae Kwon
    News & Views
  • In this issue, Wu et al. show that the RecBC helicase, which is involved in repairing double-strand DNA breaks, uses one ATPase motor to drive two translocases along opposite strands of DNA—much as an all-wheel drive engine controls movement of both front and back wheels. This mechanism may allow RecBC to load onto blunt-end DNA more efficiently and to move through obstacles such as gaps and DNA damage.

    • Smita S Patel
    News & Views
Top of page ⤴

Research Highlights

Top of page ⤴

Perspective

Top of page ⤴

Article

  • In the N-end rule pathway, the N-terminal residue of a protein is recognized by specific E3 ligases that promote its ubiquitination and proteasomal degradation. Now the structural basis for the recognition of N-terminal basic residues by the UBR box from yeast Ubr1 is solved. Together with functional analysis, the work reveals that the residue at position 2 of the substrate may influence the binding.

    • Woo Suk Choi
    • Byung-Cheon Jeong
    • Hyun Kyu Song
    Article
  • Ubr1 and Ubr2 are E3 ligases that target substrates by the N-end rule, and it is the UBR box that is needed for substrate recognition. The structures of the UBR boxes of human UBR1 and UBR2 show that they adopt a previously undescribed fold stabilized by zinc. One of the zinc-binding ligands is mutated in Johnson-Blizzard syndrome and leads to UBR box unfolding.

    • Edna Matta-Camacho
    • Guennadi Kozlov
    • Kalle Gehring
    Article
  • SpoT has a key role in the bacterial starvation response. Now the metazoan ortholog of SpoT, Mesh1, has been identified, and the structure reveals a conserved active site that can catalyze ppGpp hydrolysis. The Drosophila Mesh1 deletion mutant has impaired starvation resistance, and microarray analysis gives further insight into the starvation response.

    • Dawei Sun
    • Gina Lee
    • Jongkyeong Chung
    Article
  • The co-transcriptional processing of RNA depends on the precisely timed recruitment of different factors to the elongating transcript, which depends on the phosphorylation state of the C-terminal domain (CTD) of RNA polymerase II. Varani and coworkers show that two transcription termination factors, Rtt103 and Pcf1, bind specifically and cooperatively to Ser2-phosphorylated CTD. This provides a way to ensure that proper polyadenylation occurs only where Ser2 phosphorylation density is highest.

    • Bradley M Lunde
    • Steve L Reichow
    • Gabriele Varani
    Article
  • AZT is a nucleoside analog drug that inhibits HIV-1 reverse transcriptase (RT). The viral enzyme can acquire AZT resistance by mutations that enhance the rate of ATP-mediated excision of the incorporated AZT. Now structural work illustrates how the AZT resistance mutations create a high-affinity binding site for ATP and thus promote excision.

    • Xiongying Tu
    • Kalyan Das
    • Eddy Arnold
    Article
  • Telomere shortening, senescence and aging are connected, but how the signal at shortening telomeres is transmitted to the cell more globally is unclear. H3 and H4 synthesis is now shown to be reduced as cell cultures age. This alters expression of Asf1, a histone chaperone, compromising the ability of aging cells to restore chromatin after replication and DNA. In this way localized effects at shortening telomeres can be propagated throughout the cell.

    • Roderick J O'Sullivan
    • Stefan Kubicek
    • Jan Karlseder
    Article
  • Secretins are bacterial outer membrane proteins involved in different pathways for protein secretion or macromolecular complex assembly. Secretin can form a large oligomeric pore, whose opening needs to be carefully regulated. Now cryo-EM analysis of the Vibrio cholerae secretin GspD reveals a closed channel, with a constricted periplasmic vestibule, offering insight into the mechanism of GspD opening during protein secretion.

    • Steve L Reichow
    • Konstantin V Korotkov
    • Tamir Gonen
    Article
  • The NoGo decay pathway involves the Dom34–Hbs1 complex and targets mRNAs that are stalled during translational elongation for cleavage. The structure of the Dom34–Hbs1 complex now reveals its structural similarity to release and elongation factor complexes. Upon binding Hbs1, Doom34 adopts a tRNA-like conformational change that suggests it would act to terminate translation.

    • Liming Chen
    • Denise Muhlrad
    • Haiwei Song
    Article
  • Bacteriocins are toxins produced by bacteria to inhibit similar or related bacterial strains, and one such toxin, colicin E3, is known to target the ribosome by cleaving the 16S rRNA. The structure of the 70S ribosome in complex with the cytotoxic domain of colicin E3 now gives insight into the cleavage mechanism.

    • C Leong Ng
    • Kathrin Lang
    • V Ramakrishnan
    Article
  • Tumor suppressor PALB2 is known to interact with BRCA1 and BRCA2, and to be required for the latter's localization to sites of DNA damage. Now PALB2 is shown to bind directly to DNA, to recombinase RAD51 and its accessory factor RAD51AP1. PALB2 also stimulates D loop formation by RAD51 in a synergistic manner with RAD51AP1.

    • Eloïse Dray
    • Julia Etchin
    • Patrick Sung
    Article
Top of page ⤴

Brief Communication

  • BRCA2 is a tumor suppressor that interacts with RAD51 and functions in homologous recombination, but understanding its precise functions has been hampered by difficulties in purifying such a large protein. Now purified full-length human BRCA2 is shown to bind 6 molecules of RAD51 and to promote RAD51 binding to RPA-covered ssDNA in a manner stimulated by DSS1.

    • Jie Liu
    • Tammy Doty
    • Wolf-Dietrich Heyer
    Brief Communication
  • Tumor suppressor protein BRCA2 interacts with RAD51 and functions in homologous recombination, but understanding its precise functions has been hampered by difficulties in purifying such a large protein. Now purified full-length human BRCA2 is shown to bind selectively to ssDNA, to promote RAD51 binding to ssDNA while reducing its association with dsDNA, and to stimulate RAD51-mediated DNA strand exchange.

    • Tina Thorslund
    • Michael J McIlwraith
    • Stephen C West
    Brief Communication
  • The 2009 pandemic flu influenza A H1N1 strain has caused great public health concern. Now the structure of H1N1 neuraminidase (NA) reveals that it lacks the characteristic additional cavity at its active site, known as the 150-cavity, found in all other known group 1 NAs.

    • Qing Li
    • Jianxun Qi
    • George F Gao
    Brief Communication
  • The exon junction complex (EJC) is found on spliced mRNAs and influences post-transcriptional regulation. It is now shown that in Drosophila melanogaster, the EJC is bound to some but not all spliced junctions, suggesting that its assembly by the splicing machinery is a regulated process.

    • Jérôme Saulière
    • Nazmul Haque
    • Hervé Le Hir
    Brief Communication
Top of page ⤴

Resource

  • The genome-wide occupancy profiles for yeast RNA polymerase II in different phosphorylated forms, as well as transcription factors, are presented. The resulting analysis captures a 5' transition in which initiation factors are replaced by a general set of elongation factors that form a productive complex, which disassembles in two steps at the 3' end of the gene.

    • Andreas Mayer
    • Michael Lidschreiber
    • Patrick Cramer
    Resource
  • The C-terminal domain (CTD) of RNA polymerase II (Pol II) contains a number of repeats, phosphorylation of which influences RNA processing factor recruitment. Genome-wide CTD phosphorylation is now assessed and found not to be scaled to gene length. The kinases mediating these modifications are found not to alter Pol II distribution across a given gene uniformly, arguing that CTD phosphorylation is gene specific.

    • Hyunmin Kim
    • Benjamin Erickson
    • David L Bentley
    Resource
Top of page ⤴

Search

Quick links