Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the cholera toxin secretion channel in its closed state

Abstract

The type II secretion system (T2SS) is a macromolecular complex spanning the inner and outer membranes of Gram-negative bacteria. Remarkably, the T2SS secretes folded proteins, including multimeric assemblies such as cholera toxin and heat-labile enterotoxin from Vibrio cholerae and enterotoxigenic Escherichia coli, respectively. The major outer membrane T2SS protein is the 'secretin' GspD. Cryo-EM reconstruction of the V. cholerae secretin at 19-Å resolution reveals a dodecameric structure reminiscent of a barrel, with a large channel at its center that contains a closed periplasmic gate. The GspD periplasmic domain forms a vestibule with a conserved constriction, and it binds to a pentameric exoprotein and to the trimeric tip of the T2SS pseudopilus. By combining our results with structures of the cholera toxin and T2SS pseudopilus tip, we provide a structural basis for a possible secretion mechanism of the T2SS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and cryo-EM of the cholera toxin secretion channel VcGspD.
Figure 2: Three-dimensional electron cryo-EM reconstruction of VcGspD.
Figure 3: The secretin architecture is conserved in different secretion systems.
Figure 4: The periplasmic GspD domain contains a conserved N3 constriction and binds to the T2SS exoprotein and pseudopilus tip complex.
Figure 5: Piston-driven mechanism for protein secretion.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cianciotto, N.P. Type II secretion: a protein secretion system for all seasons. Trends Microbiol. 13, 581–588 (2005).

    Google Scholar 

  2. Hirst, T.R., Sanchez, J., Kaper, J.B., Hardy, S.J. & Holmgren, J. Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc. Natl. Acad. Sci. USA 81, 7752–7756 (1984).

    Google Scholar 

  3. Streatfield, S.J. et al. Intermolecular interactions between the A and B subunits of heat-labile enterotoxin from Escherichia coli promote holotoxin assembly and stability in vivo. Proc. Natl. Acad. Sci. USA 89, 12140–12144 (1992).

    Google Scholar 

  4. Sixma, T.K. et al. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351, 371–377 (1991).

    Google Scholar 

  5. Tauschek, M., Gorrell, R.J., Strugnell, R.A. & Robins-Browne, R.M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 7066–7071 (2002).

    Google Scholar 

  6. Hirst, T.R. & Holmgren, J. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc. Natl. Acad. Sci. USA 84, 7418–7422 (1987).

    Google Scholar 

  7. Leece, R. & Hirst, T.R. Expression of the B subunit of Escherichia coli heat-labile enterotoxin in a marine Vibrio and in a mutant that is pleiotropically defective in the secretion of extracellular proteins. J. Gen. Microbiol. 138, 719–724 (1992).

    Google Scholar 

  8. Chapon, V., Simpson, H.D., Morelli, X., Brun, E. & Barras, F. Alteration of a single tryptophan residue of the cellulose-binding domain blocks secretion of the Erwinia chrysanthemi Cel5 cellulase (ex-EGZ) via the type II system. J. Mol. Biol. 303, 117–123 (2000).

    Google Scholar 

  9. Francetić, O. & Pugsley, A.P. Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J. Bacteriol. 187, 7045–7055 (2005).

    Google Scholar 

  10. Voulhoux, R., Taupiac, M.P., Czjzek, M., Beaumelle, B. & Filloux, A. Influence of deletions within domain II of exotoxin A on its extracellular secretion from Pseudomonas aeruginosa. J. Bacteriol. 182, 4051–4058 (2000).

    Google Scholar 

  11. Braun, P., Tommassen, J. & Filloux, A. Role of the propeptide in folding and secretion of elastase of Pseudomonas aeruginosa. Mol. Microbiol. 19, 297–306 (1996).

    Google Scholar 

  12. Johnson, T.L., Abendroth, J., Hol, W.G. & Sandkvist, M. Type II secretion: from structure to function. FEMS Microbiol. Lett. 255, 175–186 (2006).

    Google Scholar 

  13. Michel, G.P.F. & Voulhoux, R. The type II secretory system (T2SS) in Gram-negative bacteria: a molecular nanomachine for secretion of Sec and Tat-dependent extracellular proteins. in Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis (ed. Wooldridge, K.) 67–92 (Caister Academic, Norfolk, UK, 2009).

  14. Shevchik, V.E., Robert-Baudouy, J. & Condemine, G. Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J. 16, 3007–3016 (1997).

    Google Scholar 

  15. Filloux, A., Michel, G. & Bally, M. GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol. Rev. 22, 177–198 (1998).

    Google Scholar 

  16. Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 40, 271–283 (2001).

    Google Scholar 

  17. Martin, P.R., Hobbs, M., Free, P.D., Jeske, Y. & Mattick, J.S. Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol. 9, 857–868 (1993).

    Google Scholar 

  18. Genin, S. & Boucher, C.A. A superfamily of proteins involved in different secretion pathways in Gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol. Gen. Genet. 243, 112–118 (1994).

    Google Scholar 

  19. Brok, R. et al. The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J. Mol. Biol. 294, 1169–1179 (1999).

    Google Scholar 

  20. Collins, R.F., Davidsen, L., Derrick, J.P., Ford, R.C. & Tonjum, T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183, 3825–3832 (2001).

    Google Scholar 

  21. Opalka, N. et al. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J. Mol. Biol. 325, 461–470 (2003).

    Google Scholar 

  22. Burghout, P. et al. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J. Bacteriol. 186, 4645–4654 (2004).

    Google Scholar 

  23. Chami, M. et al. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem. 280, 37732–37741 (2005).

    Google Scholar 

  24. Hodgkinson, J.L. et al. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat. Struct. Mol. Biol. 16, 477–485 (2009).

    Google Scholar 

  25. Marlovits, T.C. et al. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441, 637–640 (2006).

    Google Scholar 

  26. Marlovits, T.C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004).

    Google Scholar 

  27. Smith, J.M. Ximdisp—A visualization tool to aid structure determination from electron microscope images. J. Struct. Biol. 125, 223–228 (1999).

    Google Scholar 

  28. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Google Scholar 

  29. Kocsis, E., Cerritelli, M.E., Trus, B.L., Cheng, N. & Steven, A.C. Improved methods for determination of rotational symmetries in macromolecules. Ultramicroscopy 60, 219–228 (1995).

    Google Scholar 

  30. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).

    Google Scholar 

  31. Korotkov, K.V., Pardon, E., Steyaert, J. & Hol, W.G. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17, 255–265 (2009).

    Google Scholar 

  32. Finn, R.D. et al. Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–D251 (2006).

    Google Scholar 

  33. Spreter, T. et al. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat. Struct. Mol. Biol. 16, 468–476 (2009).

    Google Scholar 

  34. Chandran, V. et al. Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011–1015 (2009).

    Google Scholar 

  35. Fronzes, R. et al. Structure of a type IV secretion system core complex. Science 323, 266–268 (2009).

    Google Scholar 

  36. Christie, P.J. & Vogel, J.P. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360 (2000).

    Google Scholar 

  37. Vincent, C.D. et al. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 62, 1278–1291 (2006).

    Google Scholar 

  38. Ensminger, A.W. & Isberg, R.R. Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr. Opin. Microbiol. 12, 67–73 (2009).

    Google Scholar 

  39. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    Google Scholar 

  40. Korotkov, K.V. & Hol, W.G. Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nat. Struct. Mol. Biol. 15, 462–468 (2008).

    Google Scholar 

  41. Spagnuolo, J. et al. Identification of the gate regions in the primary structure of the secretin pIV. Mol. Microbiol. 76, 133–150 (2010).

    Google Scholar 

  42. O'Neal, C.J., Amaya, E.I., Jobling, M.G., Holmes, R.K. & Hol, W.G. Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry 43, 3772–3782 (2004).

    Google Scholar 

  43. Creze, C. et al. The crystal structure of pectate lyase peli from soft rot pathogen Erwinia chrysanthemi in complex with its substrate. J. Biol. Chem. 283, 18260–18268 (2008).

    Google Scholar 

  44. Köhler, R. et al. Structure and assembly of the pseudopilin PulG. Mol. Microbiol. 54, 647–664 (2004).

    Google Scholar 

  45. Yanez, M.E., Korotkov, K.V., Abendroth, J. & Hol, W.G. Structure of the minor pseudopilin EpsH from the type 2 Secretion system of Vibrio cholerae. J. Mol. Biol. 377, 91–103 (2008).

    Google Scholar 

  46. Yanez, M.E., Korotkov, K.V., Abendroth, J. & Hol, W.G. The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus. J. Mol. Biol. 375, 471–486 (2008).

    Google Scholar 

  47. Korotkov, K.V. et al. Calcium is essential for the major pseudopilin in the type 2 secretion system. J. Biol. Chem. 284, 25466–25470 (2009).

    Google Scholar 

  48. Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol. 185, 2749–2758 (2003).

    Google Scholar 

  49. Durand, E. et al. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J. Biol. Chem. 280, 31378–31389 (2005).

    Google Scholar 

  50. Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416–3428 (2003).

    Google Scholar 

  51. Bouley, J., Condemine, G. & Shevchik, V.E. The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J. Mol. Biol. 308, 205–219 (2001).

    Google Scholar 

  52. Korotkov, K.V., Krumm, B.E., Bagdasarian, M. & Hol, W.G. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J. Mol. Biol. 363, 311–321 (2006).

    Google Scholar 

  53. Guilvout, I., Chami, M., Engel, A., Pugsley, A.P. & Bayan, N. Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J. 25, 5241–5249 (2006).

    Google Scholar 

  54. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Google Scholar 

  55. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Google Scholar 

  56. Stewart, P.L., Chiu, C.Y., Haley, D.A., Kong, L.B. & Schlessman, J.L. Review: resolution issues in single-particle reconstruction. J. Struct. Biol. 128, 58–64 (1999).

    Google Scholar 

  57. Kleywegt, G.J. & Jones, T.A. xdlMAPMAN and xdlDATAMAN—programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D Biol. Crystallogr. 52, 826–828 (1996).

    Google Scholar 

  58. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Google Scholar 

  59. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Google Scholar 

  60. Mitchell, D.D., Pickens, J.C., Korotkov, K., Fan, E. & Hol, W.G. 3,5-Substituted phenyl galactosides as leads in designing effective cholera toxin antagonists; synthesis and crystallographic studies. Bioorg. Med. Chem. 12, 907–920 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank the Murdock Charitable Trust and the Washington Research Foundation for generous support of our cryo-EM facility. We are grateful to J. Sun, M. Gonen, B. Vollmar and S. Turley for contributions to the earlier stages of this work; M. Bagdasarian (Michigan State University) for a VcGspD-containing plasmid; and J. DelaRosa for assistance with protein preparation. We thank A. J. Merz for helpful discussions. We thank N. Korotkova and P. Wallace for discussion of SPR experiments. Part of this work was conducted at the University of Washington NanoTech User Facility, a member of the US National Science Foundation (NSF) National Nanotechnology Infrastructure Network (NNIN). This research is supported by the US National Institutes of Health grant AI34501. The Gonen laboratory is supported in part by the Howard Hughes Medical Institute Early Career Scientist program.

Author information

Authors and Affiliations

Authors

Contributions

T.G. and W.G.J.H. designed the research; K.V.K. cloned, expressed and purified protein samples, constructed the molecular models of the periplasmic rings of VcGspD and of the pseudopilus and performed SPR experiments; S.L.R. collected and processed the cryo-EM data and prepared all figures; all authors wrote the manuscript.

Corresponding authors

Correspondence to Wim G J Hol or Tamir Gonen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 796 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichow, S., Korotkov, K., Hol, W. et al. Structure of the cholera toxin secretion channel in its closed state. Nat Struct Mol Biol 17, 1226–1232 (2010). https://doi.org/10.1038/nsmb.1910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing