Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of a pentameric formate channel

Abstract

Formate transport across the inner membrane is a critical step in anaerobic bacterial respiration. Members of the formate/nitrite transport protein family function to shuttle substrate across the cytoplasmic membrane. In bacterial pathogens, the nitrite transport protein is involved in protecting bacteria from peroxynitrite released by host macrophages. We have determined the 2.13-Å structure of the formate channel FocA from Vibrio cholerae, which reveals a pentamer in which each monomer possesses its own substrate translocation pore. Unexpectedly, the fold of the FocA monomer resembles that found in water and glycerol channels. The selectivity filter in FocA consists of a cytoplasmic slit and a central constriction ring. A 2.5-Å high-formate structure shows two formate ions bound to the cytoplasmic slit via both hydrogen bonding and van der Waals interactions, providing a structural basis for the substrate selectivity of the channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the FocA protein from V. cholerae.
Figure 2: Overall structure and transmembrane topology of FocA monomer in the low-formate crystal form, represented by monomer A.
Figure 3: Different configurations of the Ω loop that connects TM2a and TM3 in different FocA monomers, both from the low-formate structure.
Figure 4: Pore structure in the FocA monomer at low formate concentration.
Figure 5: FocA selectivity structure and interactions with formate.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Stokes, J.L. Fermentation of glucose by suspensions of Escherichia coli. J. Bacteriol. 57, 147–158 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sawers, G. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66, 57–88 (1994).

    Article  CAS  Google Scholar 

  3. Clegg, S., Yu, F., Griffiths, L. & Cole, J.A. The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol. Microbiol. 44, 143–155 (2002).

    Article  CAS  Google Scholar 

  4. De Groote, M.A. et al. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc. Natl. Acad. Sci. USA 92, 6399–6403 (1995).

    Article  CAS  Google Scholar 

  5. Shiloh, M.U. et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10, 29–38 (1999).

    Article  CAS  Google Scholar 

  6. Chakravortty, D. & Hensel, M. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect. 5, 621–627 (2003).

    Article  CAS  Google Scholar 

  7. Das, P., Lahiri, A. & Chakravortty, D. Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages. Microbiology 155, 2476–2489 (2009).

    Article  CAS  Google Scholar 

  8. Saier, M.H. Jr. et al. Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422, 1–56 (1999).

    Article  CAS  Google Scholar 

  9. Delomenie, C. et al. A new homolog of FocA transporters identified in cadmium-resistant Euglena gracilis. Biochem. Biophys. Res. Commun. 358, 455–461 (2007).

    Article  CAS  Google Scholar 

  10. Sawers, G. & Bock, A. Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J. Bacteriol. 171, 2485–2498 (1989).

    Article  CAS  Google Scholar 

  11. Suppmann, B. & Sawers, G. Isolation and characterization of hypophosphite–resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol. Microbiol. 11, 965–982 (1994).

    Article  CAS  Google Scholar 

  12. Jia, W., Tovell, N., Clegg, S., Trimmer, M. & Cole, J. A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417, 297–304 (2009).

    Article  CAS  Google Scholar 

  13. Garty, H., Rudy, B. & Karlish, S.J. A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogenous populations of membrane vesicles. J. Biol. Chem. 258, 13094–13099 (1983).

    CAS  PubMed  Google Scholar 

  14. Middleton, R.E., Pheasant, D.J. & Miller, C. Purification, reconstitution, and subunit composition of a voltage-gated chloride channel from Torpedo electroplax. Biochemistry 33, 13189–13198 (1994).

    Article  CAS  Google Scholar 

  15. Walden, M. et al. Uncoupling and turnover in a Cl/H+ exchange transporter. J. Gen. Physiol. 129, 317–329 (2007).

    Article  CAS  Google Scholar 

  16. Law, C.J., Maloney, P.C. & Wang, D.N. Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62, 289–305 (2008).

    Article  CAS  Google Scholar 

  17. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    Article  CAS  Google Scholar 

  18. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000).

    Article  CAS  Google Scholar 

  19. Sui, H., Han, B.G., Lee, J.K., Walian, P. & Jap, B.K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    Article  CAS  Google Scholar 

  20. Walz, T., Smith, B.L., Zeidel, M.L., Engel, A. & Agre, P. Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem. 269, 1583–1586 (1994).

    CAS  PubMed  Google Scholar 

  21. Stroud, R.M. et al. Glycerol facilitator GlpF and the associated aquaporin family of channels. Curr. Opin. Struct. Biol. 13, 424–431 (2003).

    Article  CAS  Google Scholar 

  22. Walz, T., Fujiyoshi, Y. & Engel, A. The AQP structure and functional implications. Handb. Exp. Pharmacol. 190, 31–56 (2009).

    Article  CAS  Google Scholar 

  23. Jiang, J., Daniels, B.V. & Fu, D. Crystal structure of AqpZ tetramer reveals two distinct Arg-189 conformations associated with water permeation through the narrowest constriction of the water-conducting channel. J. Biol. Chem. 281, 454–460 (2006).

    Article  CAS  Google Scholar 

  24. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  25. Karpowich, N.K. & Wang, D.N. Structural biology. Symmetric transporters for asymmetric transport. Science 321, 781–782 (2008).

    Article  CAS  Google Scholar 

  26. Ashcroft, F., Gadsby, D. & Miller, C. Introduction. The blurred boundary between channels and transporters. Phil. Trans. R. Soc. Lond. B 364, 145–147 (2009).

    Article  Google Scholar 

  27. Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003).

    Article  CAS  Google Scholar 

  28. Garrett, T.P., Clingeleffer, D.J., Guss, J.M., Rogers, S.J. & Freeman, H.C. The crystal structure of poplar apoplastocyanin at 1.8-Å resolution. The geometry of the copper-binding site is created by the polypeptide. J. Biol. Chem. 259, 2822–2825 (1984).

    CAS  PubMed  Google Scholar 

  29. Schmiedekamp, A. & Nanda, V. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function. J. Inorg. Biochem. 103, 1054–1060 (2009).

    Article  CAS  Google Scholar 

  30. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).

    Article  CAS  Google Scholar 

  31. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  32. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    Article  CAS  Google Scholar 

  33. Dutzler, R., Campbell, E.B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  CAS  Google Scholar 

  34. Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).

    Article  CAS  Google Scholar 

  35. Mosser, G., Mallouh, V. & Brisson, A. A 9 Å two-dimensional projected structure of cholera toxin B-subunit-GM1 complexes determined by electron crystallography. J. Mol. Biol. 226, 23–28 (1992).

    Article  CAS  Google Scholar 

  36. Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T. & Rees, D.C. Structure of the MscL homolog from Mycobacterium tubeculosis: A gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).

    Article  CAS  Google Scholar 

  37. Lunin, V.V. et al. Crystal structure of the CorA Mg2+ transporter. Nature 440, 833–837 (2006).

    Article  CAS  Google Scholar 

  38. Unwin, N. The structure of ion channels in membranes of excitable cells. Neuron 3, 665–676 (1989).

    Article  CAS  Google Scholar 

  39. Khademi, S. et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305, 1587–1594 (2004).

    Article  CAS  Google Scholar 

  40. Zheng, L., Kostrewa, D., Berneche, S., Winkler, F.K. & Li, X.D. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc. Natl. Acad. Sci. USA 101, 17090–17095 (2004).

    Article  CAS  Google Scholar 

  41. Levin, E.J., Quick, M. & Zhou, M. Crystal structure of a bacterial homologue of the kidney urea transporter. Nature advance online publication, doi:10.1038/nature08558 (28 October 2009).

  42. Creighton, T.E. Proteins: Structures and Molecular Properties 335–396 (W.H. Freeman and Company, New York, 1983).

  43. Pusch, M., Ludewig, U., Rehfeldt, A. & Jentsch, T.J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature 373, 527–531 (1995).

    Article  CAS  Google Scholar 

  44. Chen, T.Y. & Miller, C. Nonequilibrium gating and voltage dependence of the ClC-0 Cl channel. J. Gen. Physiol. 108, 237–250 (1996).

    Article  CAS  Google Scholar 

  45. Tornroth-Horsefield, S. et al. Structural mechanism of plant aquaporin gating. Nature 439, 688–694 (2006).

    Article  Google Scholar 

  46. Fischer, G. et al. Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism. PLoS Biol. 7, e1000130 (2009).

    Article  Google Scholar 

  47. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A. & Sansom, M.S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996).

    Article  CAS  Google Scholar 

  48. Auer, M. et al. High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter. Biochemistry 40, 6628–6635 (2001).

    Article  CAS  Google Scholar 

  49. Ward, A. et al. Expression of prokaryotic membrane transport proteins in Escherichia coli. Biochem. Soc. Trans. 27, 893–899 (1999).

    Article  CAS  Google Scholar 

  50. Miroux, B. & Walker, J.E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  Google Scholar 

  51. Slotboom, D.J., Duurkens, R.H., Olieman, K. & Erkens, G.B. Static light scattering to characterize membrane proteins in detergent solution. Methods 46, 73–82 (2008).

    Article  CAS  Google Scholar 

  52. Kendrick, B.S., Kerwin, B.A., Chang, B.S. & Phil, J.S. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states. Anal. Biochem. 299, 136–146 (2001).

    Article  CAS  Google Scholar 

  53. Wang, D.N., Lemieux, M.J. & Boulter, J.M. Purification and characterization of transporter proteins from human erythrocyte membrane. Methods Mol. Biol. 228, 239–255 (2003).

    CAS  PubMed  Google Scholar 

  54. Otwinowski, Z. & Miror, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, Part A, 307–326 (1997).

    Article  CAS  Google Scholar 

  55. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  57. DeLano, W.L. The PyMOL User′s Manual (DeLano Scientific, San Carlos, California, USA, 2002).

  58. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  59. Huang, Y., Lemieux, M.J., Song, J., Auer, M. & Wang, D.N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003).

    Article  CAS  Google Scholar 

  60. Quick, M. et al. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl. Acad. Sci. USA 106, 5563–5568 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to W.A. Hendrickson for support, to M. Punta and B. Rost for bioinformatics analysis of membrane transporters, to B. Kloss for assistance in cloning, and to the staff at beamlines X25 and X29 of the National Synchrotron Light Source in the Brookhaven National Laboratory for assistance in X-ray diffraction experiments. We thank B. Czyzewski, Y. Fujiyoshi, N. K. Karpowich, C.J. Law, X.D. Li, J.J. Marden, R.L. Mancusso, H. Sui, J. Wu, R.M. Xu, N. Unwin, T. Walz, M. Zhou and Z. Zhou for participating synchrotron trips and helpful discussions. This work was financially supported by the Protein Structure Initiative II of the US National Institutes of Health (U54GM075026 to W.A. Hendrickson) and by US National Institute of Diabetes and Digestive and Kidney Diseases (R01-073973 to D.-N.W.). A.B.W. was partially supported by a predoctoral fellowship from the US National Institutes of Health–New York University Graduate Partnership Program in Structural Biology.

Author information

Authors and Affiliations

Authors

Contributions

A.B.W. expressed, purified, crystallized and solved the structure of FocA and functionally characterized the protein. J.L. provided the initial clone and measured the protein oligomeric state. D.-N.W. performed electron microscopy. A.B.W. and D.-N.W. wrote the manuscript.

Corresponding author

Correspondence to Da-Neng Wang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waight, A., Love, J. & Wang, DN. Structure and mechanism of a pentameric formate channel. Nat Struct Mol Biol 17, 31–37 (2010). https://doi.org/10.1038/nsmb.1740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing