Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states

Abstract

Distinct protein assemblies are nucleated at telomeric DNA to both guard the ends from damage and lengthen the DNA after replication. In yeast, Cdc13 recruits either Stn1-Ten1 to form a protective cap or the telomerase holoenzyme to extend the DNA. We have established an in vitro yeast telomere system in which Stn1-Ten1–unextendable or telomerase-extendable states can be observed. Both assemblies are Cdc13 dependent, as the Cdc13 C-terminal region supports Stn1-Ten1 interactions and the N-terminal region contains a telomerase-activation function. Notably, the yeast Hsp90 chaperone Hsp82 mediates the switch between the telomere capping and extending structures by modulating the DNA binding activity of Cdc13. Taken together, our data show that the Hsp82 chaperone facilitates telomere DNA maintenance by promoting transitions between two operative complexes and by reducing the potential for binding events that would otherwise block the assembly of downstream structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdc13 stimulates telomerase DNA extension activity independent of single-stranded 3′ overhang DNA length.
Figure 2: The N-terminal domain of Cdc13 has a telomerase-activation function.
Figure 3: Stn1 and Ten1 cooperate with Cdc13 to form an unextendable telomere protein-DNA complex in vitro.
Figure 4: Hsp82 promotes conversion of the Cdc13-capping structure into a Cdc13-extending complex by dissociating Cdc13 from DNA.
Figure 5: Hsp82-mediated dissociation of Cdc13 from DNA is an active process.
Figure 6: Hsp82 affects telomere events in vivo.
Figure 7: Hsp82 mediates telomere-protein dynamics.

Similar content being viewed by others

References

  1. Gilson, E. & Géli, V. How telomeres are replicated. Nat. Rev. Mol. Cell Biol. 8, 825–838 (2007).

    Article  CAS  Google Scholar 

  2. DeZwaan, D.C. & Freeman, B.C. HSP90: the Rosetta stone for cellular protein dynamics? Cell Cycle 7, 1006–1012 (2008).

    Article  CAS  Google Scholar 

  3. Lingner, J., Cech, T.R., Hughes, T.R. & Lundblad, V. Three ever shorter (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 94, 11190–11195 (1997).

    Article  CAS  Google Scholar 

  4. Nugent, C.I., Hughes, T.R., Lue, N.F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  Google Scholar 

  5. Grandin, N., Damon, C. & Charbonneau, M. Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol. Cell. Biol. 20, 8397–8408 (2000).

    Article  CAS  Google Scholar 

  6. Chandra, A., Hughes, T.R., Nugent, C.I. & Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 15, 404–414 (2001).

    Article  CAS  Google Scholar 

  7. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).

    Article  CAS  Google Scholar 

  8. Lue, N.F. Sequence-specific and conformation-dependent binding of yeast telomerase RNA to single-stranded telomeric DNA. Nucleic Acids Res. 27, 2560–2567 (1999).

    Article  CAS  Google Scholar 

  9. Gao, H., Cervantes, R.B., Mandell, E.K., Otero, J.H. & Lundblad, V. RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14, 208–214 (2007).

    Article  CAS  Google Scholar 

  10. Grandin, N. & Charbonneau, M. Hsp90 levels affect telomere length in yeast. Mol. Genet. Genomics 265, 126–134 (2001).

    Article  CAS  Google Scholar 

  11. Holt, S.E. et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13, 817–826 (1999).

    Article  CAS  Google Scholar 

  12. Toogun, O.A., DeZwaan, D.C. & Freeman, B.C. The Hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell. Biol. 28, 457–467 (2008).

    Article  CAS  Google Scholar 

  13. Kelleher, C., Kurth, I. & Lingner, J. Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol. Cell. Biol. 25, 808–818 (2005).

    Article  CAS  Google Scholar 

  14. Mitton-Fry, R.M., Anderson, E.M., Theobald, D.L., Glustrom, L.W. & Wuttke, D.S. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J. Mol. Biol. 338, 241–255 (2004).

    Article  CAS  Google Scholar 

  15. Niu, H., Xia, J. & Lue, N.F. Characterization of the interaction between the nuclease and reverse transcriptase activity of the yeast telomerase complex. Mol. Cell. Biol. 20, 6806–6815 (2000).

    Article  CAS  Google Scholar 

  16. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    Article  CAS  Google Scholar 

  17. Wang, M.J. et al. Telomere-binding and Stn1p-interacting activities are required for the essential function of Saccharomyces cerevisiae Cdc13p. Nucleic Acids Res. 28, 4733–4741 (2000).

    Article  CAS  Google Scholar 

  18. Puglisi, A., Bianchi, A., Lemmens, L., Damay, P. & Shore, D. Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. EMBO J. 27, 2328–2339 (2008).

    Article  CAS  Google Scholar 

  19. Toogun, O.A., Zieger, W. & Freeman, B.C. The p23 molecular chaperone promotes functional telomerase complexes through DNA dissociation. Proc. Natl. Acad. Sci. USA 104, 5765–5770 (2007).

    Article  CAS  Google Scholar 

  20. Dionne, I. & Wellinger, R.J. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc. Natl. Acad. Sci. USA 93, 13902–13907 (1996).

    Article  CAS  Google Scholar 

  21. Bertuch, A.A. & Lundblad, V. The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol. Cell. Biol. 23, 8202–8215 (2003).

    Article  CAS  Google Scholar 

  22. Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J. 18, 3509–3519 (1999).

    Article  CAS  Google Scholar 

  23. Taggart, A.K., Teng, S.C. & Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002).

    Article  CAS  Google Scholar 

  24. Teixeira, M.T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323–335 (2004).

    Article  CAS  Google Scholar 

  25. Tseng, S.F., Lin, J.J. & Tseng, S.C. The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Res. 34, 6327–6336 (2007).

    Article  Google Scholar 

  26. Li, S. et al. Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 136, 50–61 (2009).

    Article  CAS  Google Scholar 

  27. Arneriæ, M. & Lingner, J. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO J. 8, 1080–1085 (2007).

    Article  Google Scholar 

  28. Zappulla, D.C., Roberts, J.N., Goodrich, K.J., Cech, T.R. & Wuttke, D.S. Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13. Nucleic Acids Res. 37, 354–367 (2009).

    Article  CAS  Google Scholar 

  29. Meier, B., Driller, L., Jaklin, S. & Feldmann, H.M. New function of CDC13 in positive telomere length regulation. Mol. Cell. Biol. 21, 4233–4245 (2001).

    Article  CAS  Google Scholar 

  30. Freeman, B.C. & Yamamoto, K.R. Continuous recycling: a mechanism for modulatory signal transduction. Trends Biochem. Sci. 26, 285–290 (2001).

    Article  CAS  Google Scholar 

  31. Wegele, H., Muller, L. & Buchner, J. Hsp70 and Hsp90—a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol. 151, 1–44 (2004).

    Article  CAS  Google Scholar 

  32. Picard, D. Intracellular dynamics of the Hsp90 co-chaperone p23 is dictated by Hsp90. Exp. Cell Res. 312, 198–204 (2006).

    Article  CAS  Google Scholar 

  33. Friedman, K.L. & Cech, T.R. Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev. 13, 2863–2874 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate the present work to our enduring memories of Oyetunji A. Toogun. We thank J. Barral (University of Texas Medical Branch) for the CH184 Escherichia coli strain; V. Lundblad (Salk Institute) for the Cdc13 constructs; V. Zakian (Princeton University) for the CDC13-Myc9x and EST2-Myc9x yeast strains; D. Shore (University of Geneva) for Stn1 and Ten1 vectors; and A. Belmont, W. Brieher, P. Newmark and D. Rivier for helpful comments on the manuscript. D.C.D. was supported by a Cellular, Biochemical and Molecular Sciences training grant from the National Institutes of Health, and B.C.F. was supported by US Public Health Service grant DK074270.

Author information

Authors and Affiliations

Authors

Contributions

D.C.D. designed and conducted experiments, O.A.T. designed and conducted experiments, F.J.E. conducted experiments, and B.C.F. designed and conducted experiments and wrote the manuscript.

Corresponding author

Correspondence to Brian C Freeman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeZwaan, D., Toogun, O., Echtenkamp, F. et al. The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states. Nat Struct Mol Biol 16, 711–716 (2009). https://doi.org/10.1038/nsmb.1616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1616

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing