Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride

Abstract

Photosystem II (PSII) is a large homodimeric protein–cofactor complex located in the photosynthetic thylakoid membrane that acts as light-driven water:plastoquinone oxidoreductase. The crystal structure of PSII from Thermosynechococcus elongatus at 2.9-Å resolution allowed the unambiguous assignment of all 20 protein subunits and complete modeling of all 35 chlorophyll a molecules and 12 carotenoid molecules, 25 integral lipids and 1 chloride ion per monomer. The presence of a third plastoquinone QC and a second plastoquinone-transfer channel, which were not observed before, suggests mechanisms for plastoquinol-plastoquinone exchange, and we calculated other possible water or dioxygen and proton channels. Putative oxygen positions obtained from a Xenon derivative indicate a role for lipids in oxygen diffusion to the cytoplasmic side of PSII. The chloride position suggests a role in proton-transfer reactions because it is bound through a putative water molecule to the Mn4Ca cluster at a distance of 6.5 Å and is close to two possible proton channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The homodimeric PSII complex.
Figure 2: Lipids in photosystem II.
Figure 3: The quinone exchange cavity in PSII.
Figure 4: The Mn4Ca cluster of PSII and the Cl binding site.
Figure 5: Possible substrate and product channels to the lumen and Xe positions in PSII.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Wydrzynski, T. & Satoh, K. (eds.) Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase (Springer, Dordrecht, 2005).

    Google Scholar 

  2. Kern, J. & Renger, G. Photosystem II. Structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth. Res. 94, 183–202 (2007).

    Article  CAS  Google Scholar 

  3. Renger, G. Oxidative photosynthetic water splitting: energetics, kinetics and mechanism. Photosynth. Res. 92, 407–425 (2007).

    Article  CAS  Google Scholar 

  4. Brudvig, G.W. Water oxidation chemistry of photosystem II. Phil. Trans. R. Soc. Lond. B 363, 1211–1218 (2008).

    Article  CAS  Google Scholar 

  5. Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001).

    Article  CAS  Google Scholar 

  6. Kamiya, N. & Shen, J.R. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc. Natl. Acad. Sci. USA 100, 98–103 (2003).

    Article  CAS  Google Scholar 

  7. Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  CAS  Google Scholar 

  8. Biesiadka, J., Loll, B., Kern, J., Irrgang, K.-D. & Zouni, A. Crystal structure of cyanobacterial photosystem II at 3.2 Å resolution: a closer look at the Mn-cluster. Phys. Chem. Chem. Phys. 6, 4733–4736 (2004).

    Article  CAS  Google Scholar 

  9. Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044 (2005).

    Article  CAS  Google Scholar 

  10. Kashino, Y. et al. Ycf12 is a core subunit in the photosystem II complex. Biochim. Biophys. Acta 1767, 1269–1275 (2007).

    Article  CAS  Google Scholar 

  11. Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. Lipids in photosystem II: interactions with protein and cofactors. Biochim. Biophys. Acta 1767, 509–519 (2007).

    Article  CAS  Google Scholar 

  12. Sakurai, I. et al. Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J. Biochem. 140, 201–209 (2006).

    Article  CAS  Google Scholar 

  13. Gurezka, R., Laage, R., Brosig, B. & Langosch, D. A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J. Biol. Chem. 274, 9265–9270 (1999).

    Article  CAS  Google Scholar 

  14. Kern, J. et al. Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. Biochim. Biophys. Acta 1706, 147–157 (2005).

    Article  CAS  Google Scholar 

  15. Krivanek, R., Kern, J., Zouni, A., Dau, H. & Haumann, M. Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongates. Biochim. Biophys. Acta 1767, 520–527 (2007).

    Article  CAS  Google Scholar 

  16. Kaminskaya, O., Shuvalov, V.A. & Renger, G. Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b559. Biochemistry 46, 1091–1105 (2007).

    Article  CAS  Google Scholar 

  17. Ishida, N. et al. Biosynthetic exchange of bromide for chloride and strontium for calcium in the photosystem II oxygen-evolving enzymes. J. Biol. Chem. 283, 13330–13340 (2008).

    Article  CAS  Google Scholar 

  18. Yocum, C.F. The calcium and chloride requirements of the O2 evolving complex. Coord. Chem. Rev. 252, 296–305 (2008).

    Article  CAS  Google Scholar 

  19. Mueller-Dieckmann, C. et al. On the routine use of soft X-rays in macromolecular crystallography. Part IV. Efficient determination of anomalous substructures in biomacromolecules using longer X-ray wavelengths. Acta Crystallogr. D Biol. Crystallogr. 63, 366–380 (2007).

    Article  CAS  Google Scholar 

  20. Murray, J.W. & Barber, J. Identification of a calcium-binding site in the PsbO protein of photosystem II. Biochemistry 45, 4128–4130 (2006).

    Article  CAS  Google Scholar 

  21. Murray, J.W. & Barber, J. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J. Struct. Biol. 159, 228–237 (2007).

    Article  CAS  Google Scholar 

  22. Petrek, M. et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 (2006).

    Article  Google Scholar 

  23. Kawakami, K., Iwai, M., Ikeuchi, M., Kamiya, N. & Shen, J.R. Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography. FEBS Lett. 581, 4983–4987 (2007).

    Article  CAS  Google Scholar 

  24. Iwai, M., Suzuki, T., Dohmae, N., Inoue, Y. & Ikeuchi, M. Absence of the PsbZ subunit prevents association of PsbK and Ycf12 with the PSII complex in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Plant Cell Physiol. 48, 1758–1763 (2007).

    Article  CAS  Google Scholar 

  25. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    Article  CAS  Google Scholar 

  26. Yamashita, E., Zhang, H. & Cramer, W.A. Structure of the cytochrome b6f complex: quinone analogue inhibitors as ligands of heme cn . J. Mol. Biol. 370, 39–52 (2007).

    Article  CAS  Google Scholar 

  27. Stroebel, D., Choquet, Y., Popot, J.L. & Picot, D. An atypical haem in the cytochrome b6f complex. Nature 426, 413–418 (2003).

    Article  CAS  Google Scholar 

  28. Jones, M.R. Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog. Lipid Res. 46, 56–87 (2007).

    Article  CAS  Google Scholar 

  29. Lancaster, C.R., Hunte, C., Kelley, J., III, Trumpower, B.L. & Ditchfield, R. A comparison of stigmatellin conformations, free and bound to the photosynthetic reaction center and the cytochrome bc1 complex. J. Mol. Biol. 368, 197–208 (2007).

    Article  CAS  Google Scholar 

  30. Shinzawa-Itoh, K. et al. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J. 26, 1713–1725 (2007).

    Article  CAS  Google Scholar 

  31. Vass, I. & Aro, E.M. Photoinhibition of photosynthetic electron transport. in Primary Processes of Photosynthesis: Basic Principles and Apparatus Vol.1 (ed. Renger, G.) 393–425 (Royal Society of Chemistry, Cambridge, 2008).

    Google Scholar 

  32. Palsdottir, H. & Hunte, C. Lipids in membrane protein structures. Biochim. Biophys. Acta 1666, 2–18 (2004).

    Article  CAS  Google Scholar 

  33. Rokka, A., Suorsa, M., Saleem, A., Battchikova, N. & Aro, E.M. Synthesis and assembly of thylakoid protein complexes. Multiple assembly steps of photosystem II. Biochem. J. 388, 159–168 (2005).

    Article  CAS  Google Scholar 

  34. Nishiyama, Y., Allakhverdiev, S.I. & Murata, N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta 1757, 742–749 (2006).

    Article  CAS  Google Scholar 

  35. Kruse, O. et al. Phosphatidylglycerol is involved in the dimerization of photosystem II. J. Biol. Chem. 275, 6509–6514 (2000).

    Article  CAS  Google Scholar 

  36. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    Article  CAS  Google Scholar 

  37. Standfuss, J., Terwisscha van Scheltinga, A.C., Lamborghini, M. & Kuehlbrandt, W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 24, 919–928 (2005).

    Article  CAS  Google Scholar 

  38. Laczkó-Dobos, H. et al. Role of phosphatidylglycerol in the function and assembly of photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim. Biophys. Acta 1777, 1184–1194 (2008).

    Article  Google Scholar 

  39. Gombos, Z. et al. Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41, 3796–3802 (2002).

    Article  CAS  Google Scholar 

  40. Barber, J., Morris, E.P. & da Fonseca, P.C. Interaction of the allophycocyanin core complex with photosystem II. Photochem. Photobiol. Sci. 2, 536–541 (2003).

    Article  CAS  Google Scholar 

  41. Murray, J.W., Maghlaoui, K. & Barber, J. The structure of allophycocyanin from Thermosynechococcus elongatus at 3.5 Å resolution. Acta Crystallogr. F63, 998–1002 (2007).

    Google Scholar 

  42. Bondarava, N. et al. Evidence that cytochrome b559 mediates the oxidation of reduced plastoquinone in the dark. J. Biol. Chem. 278, 13554–13560 (2003).

    Article  CAS  Google Scholar 

  43. Gao, X. et al. Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry 42, 9067–9080 (2003).

    Article  CAS  Google Scholar 

  44. Yano, J. & Yachandra, V.K. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster from X-ray spectroscopy. Inorg. Chem. 47, 1711–1726 (2008).

    Article  CAS  Google Scholar 

  45. Yano, J. et al. X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc. Natl. Acad. Sci. USA 102, 12047–12052 (2005).

    Article  CAS  Google Scholar 

  46. Grabolle, M., Haumann, M., Müeller, C., Liebisch, P. & Dau, H. Rapid loss of structural motifs in the manganese complex of oxygenic photosynthesis by X-ray irradiation at 10–300 K. J. Biol. Chem. 281, 4580–4588 (2006).

    Article  CAS  Google Scholar 

  47. Yano, J. et al. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314, 821–825 (2006).

    Article  CAS  Google Scholar 

  48. Olesen, K. & Andreasson, L.E. The function of the chloride ion in photosynthetic oxygen evolution. Biochemistry 42, 2025–2035 (2003).

    Article  CAS  Google Scholar 

  49. Lindberg, K. & Andreasson, L.E. A one-site, two-state model for the binding of anions in photosystem II. Biochemistry 35, 14259–14267 (1996).

    Article  CAS  Google Scholar 

  50. Haumann, M. et al. Bromide does not bind to the Mn4Ca complex in its S1 state in Cl-depleted and Br-reconstituted oxygen-evolving photosystem II: evidence from X-ray absorption spectroscopy at the Br K-edge. Biochemistry 45, 13101–13107 (2006).

    Article  CAS  Google Scholar 

  51. Debus, R.J., Strickler, M.A., Walker, L.M. & Hillier, W. No evidence from FTIR difference spectroscopy that aspartate-170 of the D1 polypeptide ligates a manganese ion that undergoes oxidation during the S0 to S1, S1 to S2, or S2 to S3 transitions in photosystem II. Biochemistry 44, 1367–1374 (2005).

    Article  CAS  Google Scholar 

  52. Debus, R.J. Protein ligation of the photosynthetic oxygen-evolving center. Coord. Chem. Rev. 252, 244–258 (2008).

    Article  CAS  Google Scholar 

  53. Murray, J.W. et al. X-Ray crystallography identifies two chloride binding sites in the oxygen evolving centre of photosystem II. Energy. Environ. Sci. 1, 161–166 (2008).

    Article  CAS  Google Scholar 

  54. Ho, F.M. & Styring, S. Access channels and methanol binding site to the CaMn4 cluster in photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim. Biophys. Acta 1777, 140–153 (2008).

    Article  CAS  Google Scholar 

  55. Chu, H.A., Nguyen, A.P. & Debus, R.J. Amino acid residues that influence the binding of manganese or calcium to photosystem II. 1. The lumenal interhelical domains of the D1 polypeptide. Biochemistry 34, 5839–5858 (1995).

    Article  CAS  Google Scholar 

  56. Ishikita, H., Saenger, W., Loll, B., Biesiadka, J. & Knapp, E.W. Energetics of a possible proton exit pathway for water oxidation in photosystem II. Biochemistry 45, 2063–2071 (2006).

    Article  CAS  Google Scholar 

  57. Svensson-Ek, M. et al. The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J. Mol. Biol. 321, 329–339 (2002).

    Article  CAS  Google Scholar 

  58. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  59. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  60. Kashino, Y., Koike, H. & Satoh, K. An improved sodium dodecyl sulfate-polyacrylamide gel electrophoresis system for the analysis of membrane protein complexes. Electrophoresis 22, 1004–1007 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deutsche Forschungsgemeinschaft for support within the framework of Sfb 498 (projects A4, C7). We also acknowledge W. Kabsch for help with XDS, W. Schröder for help with protein sequencing, P. Franke and C. Weise for MS data collection and J. Biesiadka for cooperation. We thank F. Müh, G. Renger, R. Clarke, V. Yachandra and K. Sauer for discussion and careful reading of the manuscript. Beam time and support at ESRF (Grenoble), SLS (Villigen) and BESSY (Berlin) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.B., J.K. and A.Z. purified and crystallized the protein; A. Guskov, M.B., J.K. and A. Gabdulkhakov collected diffraction data; A. Guskov and A. Gabdulkhakov did structure determination and model building; A. Gabdulkhakov calculated channels; A. Guskov, J.K., M.B., A. Gabdulkhakov, A.Z. and W.S. designed experiments, analyzed data and prepared the manuscript.

Corresponding authors

Correspondence to Athina Zouni or Wolfram Saenger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1‐4 and Supplementary Discussion (PDF 794 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guskov, A., Kern, J., Gabdulkhakov, A. et al. Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16, 334–342 (2009). https://doi.org/10.1038/nsmb.1559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1559

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing