Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A distinct class of small RNAs arises from pre-miRNA–proximal regions in a simple chordate

Abstract

MicroRNAs (miRNAs) have been implicated in various cellular processes. They are thought to function primarily as inhibitors of gene activity by attenuating translation or promoting mRNA degradation. A typical miRNA gene produces a predominant 21-nucleotide (nt) RNA (the miRNA) along with a less abundant miRNA* product. We sought to identify miRNAs from the simple chordate Ciona intestinalis through comprehensive sequencing of small RNA libraries created from different developmental stages. Unexpectedly, half of the identified miRNA loci encode up to four distinct, stable small RNAs. The additional RNAs, miRNA-offset RNAs (moRs), are generated from sequences immediately adjacent to the predicted 60-nt pre-miRNA. moRs seem to be produced by RNAse III–like processing, are 20 nt long and, like miRNAs, are observed at specific developmental stages. We present evidence suggesting that the biogenesis of moRs results from an intrinsic property of the miRNA processing machinery in C. intestinalis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental expression of small RNAs encoded by the C. intestinalis miR-219 locus.
Figure 2: Coincident expression of 5′ and 3′ moR sequences from the C. intestinalis miR-124 locus.
Figure 3: Direct detection of the 5′-moR-133 species.
Figure 4: Ectopic expression of Drosophila pri-miRNAs can induce moR production in C. intestinalis embryos.
Figure 5: A speculative model for the biogenesis of moRs.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  Google Scholar 

  2. Zamore, P.D. & Haley, B. Ribo-gnome: the big world of small RNAs. Science 309, 1519–1524 (2005).

    Article  CAS  Google Scholar 

  3. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  4. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  Google Scholar 

  5. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  Google Scholar 

  6. Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

    Article  CAS  Google Scholar 

  7. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  Google Scholar 

  8. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  Google Scholar 

  9. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    Article  CAS  Google Scholar 

  10. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  Google Scholar 

  11. Tomari, Y. & Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005).

    Article  CAS  Google Scholar 

  12. Okamura, K. et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat. Struct. Mol. Biol. 15, 354–363 (2008).

    Article  CAS  Google Scholar 

  13. Heimberg, A.M., Sempere, L.F., Moy, V.N., Donoghue, P.C. & Peterson, K.J. MicroRNAs and the advent of vertebrate morphological complexity. Proc. Natl. Acad. Sci. USA 105, 2946–2950 (2008).

    Article  CAS  Google Scholar 

  14. Dehal, P. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).

    Article  CAS  Google Scholar 

  15. Murphy, D., Dancis, B. & Brown, J.R. The evolution of core proteins involved in microRNA biogenesis. BMC Evol. Biol. 8, 92 (2008).

    Article  Google Scholar 

  16. Friedlander, M.R. et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol. 26, 407–415 (2008).

    Article  Google Scholar 

  17. Fu, X., Adamski, M. & Thompson, E.M. Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol. Biol. Evol. 25, 1067–1080 (2008).

    Article  CAS  Google Scholar 

  18. Prochnik, S.E., Rokhsar, D.S. & Aboobaker, A.A. Evidence for a microRNA expansion in the bilaterian ancestor. Dev. Genes Evol. 217, 73–77 (2007).

    Article  CAS  Google Scholar 

  19. Ruby, J.G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 17, 1850–1864 (2007).

    Article  CAS  Google Scholar 

  20. Stark, A. et al. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res. 17, 1865–1879 (2007).

    Article  CAS  Google Scholar 

  21. Slack, F. & Ruvkun, G. Temporal pattern formation by heterochronic genes. Annu. Rev. Genet. 31, 611–634 (1997).

    Article  CAS  Google Scholar 

  22. Grimson, A. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 1193–1197 (2008).

    Article  CAS  Google Scholar 

  23. Seitz, H., Ghildiyal, M. & Zamore, P.D. Argonaute loading improves the 5′ precision of both microRNAs and their miRNA strands in flies. Curr. Biol. 18, 147–151 (2008).

    Article  CAS  Google Scholar 

  24. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).

    Article  CAS  Google Scholar 

  25. Du, T. & Zamore, P.D. microPrimer: the biogenesis and function of microRNA. Development 132, 4645–4652 (2005).

    Article  CAS  Google Scholar 

  26. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  Google Scholar 

  27. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  Google Scholar 

  28. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  Google Scholar 

  29. MacRae, I.J. & Doudna, J.A. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr. Opin. Struct. Biol. 17, 138–145 (2007).

    Article  CAS  Google Scholar 

  30. Axtell, M.J. Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim. Biophys. Acta 1779, 725–734 (2008).

    Article  CAS  Google Scholar 

  31. Chen, J.F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article  CAS  Google Scholar 

  32. Davidson, B., Shi, W., Beh, J., Christiaen, L. & Levine, M. FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev. 20, 2728–2738 (2006).

    Article  CAS  Google Scholar 

  33. Corbo, J.C., Levine, M. & Zeller, R.W. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124, 589–602 (1997).

    CAS  PubMed  Google Scholar 

  34. Biemar, F. et al. Comprehensive identification of Drosophila dorsal-ventral patterning genes using a whole-genome tiling array. Proc. Natl. Acad. Sci. USA 103, 12763–12768 (2006).

    Article  CAS  Google Scholar 

  35. Bushati, N., Stark, A., Brennecke, J. & Cohen, S.M. Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr. Biol. 18, 501–506 (2008).

    Article  CAS  Google Scholar 

  36. Beh, J., Shi, W., Levine, M., Davidson, B. & Christiaen, L. FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development 134, 3297–3305 (2007).

    Article  CAS  Google Scholar 

  37. Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785 (2008).

    Article  CAS  Google Scholar 

  38. Wang, Z. & Kiledjian, M. Functional link between the mammalian exosome and mRNA decapping. Cell 107, 751–762 (2001).

    Article  CAS  Google Scholar 

  39. Wilusz, C.J., Wormington, M. & Peltz, S.W. The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol. 2, 237–246 (2001).

    Article  CAS  Google Scholar 

  40. Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).

    Article  CAS  Google Scholar 

  41. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  CAS  Google Scholar 

  42. Haley, B., Hendrix, D., Trang, V. & Levine, M. A simplified miRNA-based gene silencing method for Drosophila melanogaster. Dev. Biol. 321, 482–490 (2008).

    Article  CAS  Google Scholar 

  43. Norden-Krichmar, T.M., Holtz, J., Pasquinelli, A.E. & Gaasterland, T. Computational prediction and experimental validation of Ciona intestinalis microRNA genes. BMC Genomics 8, 445 (2007).

    Article  Google Scholar 

  44. Chapman, J. Whole Genome Shotgun Assembly in Theory and Practice. PhD Thesis, Univ. California, Berkeley, 50–51 (2004).

    Google Scholar 

  45. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  46. Mathews, D.H., Sabina, J., Zuker, M. & Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of rna secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Tonkin of the Vincent J. Coates Genomics Sequencing Laboratory for assistance with high-throughput sequencing and general expertise, H. Melichar for critical reading of the manuscript and members of the Levine laboratory for discussions. B.H. is supported by an American Cancer Society Postdoctoral Fellowship. This work was funded by a grant from the US National Institutes of Health (34431) to M.L.,

Author information

Authors and Affiliations

Authors

Contributions

W.S. and B.H. performed all experiments on C. intestinalis and D. melanogaster, respectively; D.H. performed bioinformatic analyses; M.L. and B.H. supervised the study and wrote the first draft of the manuscript; all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Mike Levine or Benjamin Haley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–4 and Supplementary Methods (PDF 2219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Hendrix, D., Levine, M. et al. A distinct class of small RNAs arises from pre-miRNA–proximal regions in a simple chordate. Nat Struct Mol Biol 16, 183–189 (2009). https://doi.org/10.1038/nsmb.1536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing