Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore

Abstract

Potassium channels allow K+ ions to diffuse through their pores while preventing smaller Na+ ions from permeating. Discrimination between these similar, abundant ions enables these proteins to control electrical and chemical activity in all organisms. Selection occurs at the narrow selectivity filter containing structurally identified K+ binding sites. Selectivity is thought to arise because smaller ions such as Na+ do not bind to these K+ sites in a thermodynamically favorable way. Using the model K+ channel KcsA, we examined how intracellular Na+ and Li+ interact with the pore and the permeant ions using electrophysiology, molecular dynamics simulations and X-ray crystallography. Our results suggest that these small cations have a separate binding site within the K+ selectivity filter. We propose that selective permeation from the intracellular side primarily results from a large energy barrier blocking filter entry for Na+ and Li+ in the presence of K+, not from a difference of binding affinity between ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular Li+ and Na+ modify the outward K+ current.
Figure 2: Intracellular Li+ blocks K+ current with fast kinetics.
Figure 3: Intracellular Na+ and Li+ induce decrease of burst durations, consistent with slow block.
Figure 4: Molecular dynamics (MD) simulations show different binding sites for K+, Na+ and Li+ within the S4 region.
Figure 5: Structure of KcsA in Li+ indicates potential Li+ binding sites in the pore.
Figure 6: Free-energy profiles for different multi-ion configurations show large energy barriers for Na+ and Li+ to enter the filter.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bezanilla, F. & Armstrong, C.M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 60, 588–608 (1972).

    Article  CAS  Google Scholar 

  2. Hille, B. & Schwarz, W. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72, 409–442 (1978).

    Article  CAS  Google Scholar 

  3. Hille, B. Potassium channels in myelinated nerve: selective permeability to small cations. J. Gen. Physiol. 61, 669–686 (1973).

    Article  CAS  Google Scholar 

  4. Neyton, J. & Miller, C. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J. Gen. Physiol. 92, 569–586 (1988).

    Article  CAS  Google Scholar 

  5. Neyton, J. & Miller, C. Potassium blocks barium permeation through a calcium-activated potassium channel. J. Gen. Physiol. 92, 549–567 (1988).

    Article  CAS  Google Scholar 

  6. Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003).

    Article  CAS  Google Scholar 

  7. Zhou, Y.F., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 angstrom resolution. Nature 414, 43–48 (2001).

    Article  CAS  Google Scholar 

  8. Lockless, S.W., Zhou, M. & MacKinnon, R. Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol. 5, e121 (2007).

    Article  Google Scholar 

  9. Morais-Cabral, J.H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001).

    Article  CAS  Google Scholar 

  10. Valiyaveetil, F.I., Leonetti, M., Muir, T.W. & Mackinnon, R. Ion selectivity in a semisynthetic K+ channel locked in the conductive conformation. Science 314, 1004–1007 (2006).

    Article  CAS  Google Scholar 

  11. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  12. Heginbotham, L., Abramson, T. & MacKinnon, R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258, 1152–1155 (1992).

    Article  CAS  Google Scholar 

  13. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    Article  CAS  Google Scholar 

  14. Aqvist, J. & Luzhkov, V. Ion permeation mechanism of the potassium channel. Nature 404, 881–884 (2000).

    Article  CAS  Google Scholar 

  15. Berneche, S. & Roux, B. Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001).

    Article  CAS  Google Scholar 

  16. Bostick, D.L. & Brooks, C.L. III Selectivity in K+ channels is due to topological control of the permeant ion's coordinated state. Proc. Natl. Acad. Sci. USA 104, 9260–9265 (2007).

    Article  CAS  Google Scholar 

  17. Burykin, A., Kato, M. & Warshel, A. Exploring the origin of the ion selectivity of the KcsA potassium channel. Proteins 52, 412–426 (2003).

    Article  CAS  Google Scholar 

  18. Fowler, P.W., Tai, K. & Sansom, M.S. The selectivity of K+ ion channels: testing the hypotheses. Biophys. J. 95, 5062–5072 (2008).

    Article  CAS  Google Scholar 

  19. Noskov, S.Y., Berneche, S. & Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004).

    Article  CAS  Google Scholar 

  20. Varma, S. & Rempe, S.B. Tuning ion coordination architectures to enable selective partitioning. Biophys. J. 93, 1093–1099 (2007).

    Article  CAS  Google Scholar 

  21. Allen, T.W., Andersen, O.S. & Roux, B. On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. J. Gen. Physiol. 124, 679–690 (2004).

    Article  CAS  Google Scholar 

  22. Noskov, S.Y. & Roux, B. Ion selectivity in potassium channels. Biophys. Chem. 124, 279–291 (2006).

    Article  CAS  Google Scholar 

  23. Varma, S. & Rempe, S.B. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 124, 192–199 (2006).

    Article  CAS  Google Scholar 

  24. Bichet, D., Grabe, M., Jan, Y.N. & Jan, L.Y. Electrostatic interactions in the channel cavity as an important determinant of potassium channel selectivity. Proc. Natl. Acad. Sci. USA 103, 14355–14360 (2006).

    Article  CAS  Google Scholar 

  25. Grabe, M., Bichet, D., Qian, X., Jan, Y.N. & Jan, L.Y.K. K+ channel selectivity depends on kinetic as well as thermodynamic factors. Proc. Natl. Acad. Sci. USA 103, 14361–14366 (2006).

    Article  CAS  Google Scholar 

  26. Nimigean, C.M. & Miller, C. Na+ block and permeation in a K+ channel of known structure. J. Gen. Physiol. 120, 323–335 (2002).

    Article  CAS  Google Scholar 

  27. Zhou, Y. & MacKinnon, R. Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry 43, 4978–4982 (2004).

    Article  CAS  Google Scholar 

  28. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Inc., 2001).

  29. Woodhull, A.M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  30. Lamoureux, G. & Roux, B. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J. Phys. Chem. B 110, 3308–3322 (2006).

    Article  CAS  Google Scholar 

  31. Spassova, M. & Lu, Z. Coupled ion movement underlies rectification in an inward-rectifier K+ channel. J. Gen. Physiol. 112, 211–221 (1998).

    Article  CAS  Google Scholar 

  32. Roux, B., Berneche, S. & Im, W. Ion channels, permeation, and electrostatics: insight into the function of KcsA. Biochemistry 39, 13295–13306 (2000).

    Article  CAS  Google Scholar 

  33. Cordero-Morales, J.F. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13, 311–318 (2006).

    Article  CAS  Google Scholar 

  34. Chakrapani, S., Cordero-Morales, J.F. & Perozo, E. A quantitative description of KcsA gating II: single-channel currents. J. Gen. Physiol. 130, 479–496 (2007).

    Article  CAS  Google Scholar 

  35. Chakrapani, S., Cordero-Morales, J.F. & Perozo, E. A quantitative description of KcsA gating I: macroscopic currents. J. Gen. Physiol. 130, 465–478 (2007).

    Article  CAS  Google Scholar 

  36. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single Streptomyces lividans K+ channels: functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999).

    Article  CAS  Google Scholar 

  37. Guidoni, L., Torre, V. & Carloni, P. Potassium and sodium binding to the outer mouth of the K+ channel. Biochemistry 38, 8599–8604 (1999).

    Article  CAS  Google Scholar 

  38. Allen, T.W., Kuyucak, S. & Chung, S.H. Molecular dynamics study of the KcsA potassium channel. Biophys. J. 77, 2502–2516 (1999).

    Article  CAS  Google Scholar 

  39. Allen, T.W., Blizniuk, A., Rendell, A., Kuyucak, S. & Chung, S.H. The potassium channel: structure, selectivity and diffusion. J. Chem. Phys. 112, 8191–8204 (2000).

    Article  CAS  Google Scholar 

  40. Shrivastava, I.H., Tieleman, D.P., Biggin, P.C. & Sansom, M.S.K. K+ versus Na+ ions in a K channel selectivity filter: a simulation study. Biophys. J. 83, 633–645 (2002).

    Article  CAS  Google Scholar 

  41. Thomas, M., Jayatilaka, D. & Corry, B. The predominant role of coordination number in potassium channel selectivity. Biophys. J. 93, 2635–2643 (2007).

    Article  CAS  Google Scholar 

  42. Alam, A. & Jiang, Y. Structural analysis of ion selectivity in the NaK channel. Nat. Struct. Mol. Biol. 16, 35–41 (2009).

    Article  CAS  Google Scholar 

  43. Noskov, S.Y. & Roux, B. Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. J. Gen. Physiol. 129, 135–143 (2007).

    Article  CAS  Google Scholar 

  44. Murata, T. et al. Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase. Proc. Natl. Acad. Sci. USA 105, 8607–8612 (2008).

    Article  CAS  Google Scholar 

  45. Plested, A.J., Vijayan, R., Biggin, P.C. & Mayer, M.L. Molecular basis of kainate receptor modulation by sodium. Neuron 58, 720–735 (2008).

    Article  CAS  Google Scholar 

  46. Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285, 100–102 (1999).

    Article  CAS  Google Scholar 

  47. Hodgkin, A.L. & Keynes, R.D. The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128, 61–88 (1955).

    Article  CAS  Google Scholar 

  48. LeMasurier, M., Heginbotham, L. & Miller, C. KcsA: it's a potassium channel. J. Gen. Physiol. 118, 303–314 (2001).

    Article  CAS  Google Scholar 

  49. Zwanzig, R.W. High temperature equation of state by a perturbation method. J. Chem. Phys. 22 (Part I), 1420–1426 (1954).

    Article  CAS  Google Scholar 

  50. Skerra, A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151, 131–135 (1994).

    Article  CAS  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  52. Brunger, A.T. Version 1.2 of the crystallography and NMR system. Nat. Protocols 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  54. Delano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, Palo Alto, California, USA, 2002).

  55. Brooks, B.R. et al. CHARMM: a program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  56. MacKerell, A.D., Jr. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  Google Scholar 

  57. Feller, S.E. & MacKerell, A.D., Jr. An improved empirical potential energy function for molecular simulations of phospholipids. J. Phys. Chem. B 104, 7510–7515 (2000).

    Article  CAS  Google Scholar 

  58. Noskov, S.Y. & Roux, B. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. J. Mol. Biol. 377, 804–818 (2008).

    Article  CAS  Google Scholar 

  59. Torrie, G.M. & Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. Posson, J. McCoy, D. Kim, A. George and L. DeFelice for insightful discussions and acknowledge support from American Heart Association grant 0630168ZN and National Institutes of Health grant GM077560 to C.M.N. A.N.T. is funded by a National Science Foundation Graduate Research Fellowships Program grant. T.W.A. and I.K. would like to thank S. Noskov for providing and testing Li+ parameters and acknowledge support from a National Science Foundation CAREER award MCB-0546768. T.D.P. acknowledges support from National Institutes of Health grants 1-T32-NS07491-06 and 5-T32-GM008320-19. T.M.I. acknowledges support from National Institutes of Health grant 5-R01-GM079419-03. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. Use of the Life Sciences Collaborative Access Team Sector 21 beamline was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor for the support of this research program (Grant 085P1000817).

Author information

Authors and Affiliations

Authors

Contributions

A.N.T., I.K., T.D.P., T.M.I., T.W.A. and C.M.N. performed research, analyzed data and wrote the paper.

Corresponding author

Correspondence to Crina M Nimigean.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, Supplementary Discussion and Supplementary Methods (PDF 4933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, A., Kim, I., Panosian, T. et al. Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore. Nat Struct Mol Biol 16, 1317–1324 (2009). https://doi.org/10.1038/nsmb.1703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing