Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome

Abstract

Transcription regulation in eukaryotes involves rapid recruitment and proper assembly of transcription factors at gene promoters. To determine the dynamics of the transcription machinery on DNA, we used a differential chromatin immunoprecipitation procedure coupled to whole-genome microarray detection in Saccharomyces cerevisiae. We find that TATA-binding protein (TBP) turnover is low at RNA polymerase I (Pol I) promoters. Whereas RNA polymerase III (Pol III) promoters represent an intermediate case, TBP turnover is high at RNA polymerase II (Pol II) promoters. Within these promoters, the highest turnover correlates with binding of the Spt–Ada–Gcn5 acetyltransferase complex (SAGA) coactivator, Mot1p dependence and presence of a canonical TATA box. In contrast, slow turnover Pol II promoters depend on TFIID and on the gene-specific factor, Rap1p. Together this shows that TBP turnover is regulated by protein factors rather than DNA sequence and argues that TBP turnover is an important determinant in regulating gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induced TBP expression results in TBP exchange at promoters.
Figure 2: TBP turnover at selected promoters.
Figure 3: Genome-wide analysis of TBP turnover.
Figure 4: Analysis of TBP dynamics at the ribosomal DNA (rDNA) locus.
Figure 5: Analysis of a subset of Pol II promoters with distinct TBP turnovers.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Albright, S.R. & Tjian, R. TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242, 1–13 (2000).

    Article  CAS  Google Scholar 

  2. Thomas, M.C. & Chiang, C.M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006).

    Article  CAS  Google Scholar 

  3. Hernandez, N. TBP, a universal eukaryotic transcription factor? Genes Dev. 7, 1291–1308 (1993).

    Article  CAS  Google Scholar 

  4. Basehoar, A.D., Zanton, S.J. & Pugh, B.F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004).

    Article  CAS  Google Scholar 

  5. Kim, J. & Iyer, V.R. Global role of TATA box-binding protein recruitment to promoters in mediating gene expression profiles. Mol. Cell. Biol. 24, 8104–8112 (2004).

    Article  CAS  Google Scholar 

  6. Pugh, B.F. Control of gene expression through regulation of the TATA-binding protein. Gene 255, 1–14 (2000).

    Article  CAS  Google Scholar 

  7. Steffan, J.S., Keys, D.A., Dodd, J.A. & Nomura, M. The role of TBP in rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae: TBP is required for upstream activation factor-dependent recruitment of core factor. Genes Dev. 10, 2551–2563 (1996).

    Article  CAS  Google Scholar 

  8. Borggrefe, T., Davis, R., Bareket-Samish, A. & Kornberg, R.D. Quantitation of the RNA polymerase II transcription machinery in yeast. J. Biol. Chem. 276, 47150–47153 (2001).

    Article  CAS  Google Scholar 

  9. Sprouse, R.O. et al. Regulation of TATA-binding protein dynamics in living yeast cells. Proc. Natl. Acad. Sci. USA 105, 13304–13308 (2008).

    Article  CAS  Google Scholar 

  10. Hahn, S., Buratowski, S., Sharp, P.A. & Guarente, L. Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc. Natl. Acad. Sci. USA 86, 5718–5722 (1989).

    Article  CAS  Google Scholar 

  11. Hoopes, B.C., LeBlanc, J.F. & Hawley, D.K. Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. J. Biol. Chem. 267, 11539–11547 (1992).

    CAS  PubMed  Google Scholar 

  12. van Werven, F.J. et al. Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome. Genes Dev. 22, 2359–2369 (2008).

    Article  CAS  Google Scholar 

  13. Nalley, K., Johnston, S.A. & Kodadek, T. Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. Nature 442, 1054–1057 (2006).

    Article  CAS  Google Scholar 

  14. Schermer, U.J., Korber, P. & Horz, W. Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol. Cell 19, 279–285 (2005).

    Article  CAS  Google Scholar 

  15. Dion, M.F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  Google Scholar 

  16. Cloutier, T.E., Librizzi, M.D., Mollah, A.K., Brenowitz, M. & Willis, I.M. Kinetic trapping of DNA by transcription factor IIIB. Proc. Natl. Acad. Sci. USA 98, 9581–9586 (2001).

    Article  CAS  Google Scholar 

  17. Aprikian, P., Moorefield, B. & Reeder, R.H. New model for the yeast RNA polymerase I transcription cycle. Mol. Cell. Biol. 21, 4847–4855 (2001).

    Article  CAS  Google Scholar 

  18. Panov, K.I., Friedrich, J.K. & Zomerdijk, J.C. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol. Cell. Biol. 21, 2641–2649 (2001).

    Article  CAS  Google Scholar 

  19. Fan, X., Shi, H. & Lis, J.T. Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP. Nucleic Acids Res. 33, 838–845 (2005).

    Article  CAS  Google Scholar 

  20. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  Google Scholar 

  21. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  Google Scholar 

  22. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  Google Scholar 

  23. Lieb, J.D., Liu, X., Botstein, D. & Brown, P.O. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat. Genet. 28, 327–334 (2001).

    Article  CAS  Google Scholar 

  24. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    Article  CAS  Google Scholar 

  25. Auble, D.T. et al. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev. 8, 1920–1934 (1994).

    Article  CAS  Google Scholar 

  26. Andrau, J.C. et al. Mot1p is essential for TBP recruitment to selected promoters during in vivo gene activation. EMBO J. 21, 5173–5183 (2002).

    Article  CAS  Google Scholar 

  27. Dasgupta, A., Darst, R.P., Martin, K.J., Afshari, C.A. & Auble, D.T. Mot1 activates and represses transcription by direct, ATPase-dependent mechanisms. Proc. Natl. Acad. Sci. USA 99, 2666–2671 (2002).

    Article  CAS  Google Scholar 

  28. Gilfillan, S., Stelzer, G., Piaia, E., Hofmann, M.G. & Meisterernst, M. Efficient binding of NC2.TATA-binding protein to DNA in the absence of TATA. J. Biol. Chem. 280, 6222–6230 (2005).

    Article  CAS  Google Scholar 

  29. Schluesche, P., Stelzer, G., Piaia, E., Lamb, D.C. & Meisterernst, M. NC2 mobilizes TBP on core promoter TATA boxes. Nat. Struct. Mol. Biol. 14, 1196–1201 (2007).

    Article  CAS  Google Scholar 

  30. Ketela, T., Brown, J.L., Stewart, R.C. & Bussey, H. Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway. Mol. Gen. Genet. 259, 372–378 (1998).

    Article  CAS  Google Scholar 

  31. Morgan, B.A. et al. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16, 1035–1044 (1997).

    Article  CAS  Google Scholar 

  32. Sorger, P.K. Heat shock factor and the heat shock response. Cell 65, 363–366 (1991).

    Article  CAS  Google Scholar 

  33. Garbett, K.A., Tripathi, M.K., Cencki, B., Layer, J.H. & Weil, P.A. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol. Cell. Biol. 27, 297–311 (2007).

    Article  CAS  Google Scholar 

  34. Mencía, M., Moqtaderi, Z., Geisberg, J.V., Kuras, L. & Struhl, K. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol. Cell 9, 823–833 (2002).

    Article  Google Scholar 

  35. Whitehall, S.K., Kassavetis, G.A. & Geiduschek, E.P. The symmetry of the yeast U6 RNA gene's TATA box and the orientation of the TATA-binding protein in yeast TFIIIB. Genes Dev. 9, 2974–2985 (1995).

    Article  CAS  Google Scholar 

  36. Sprouse, R.O., Wells, M.N. & Auble, D.T. TATA-binding protein variants that bypass the requirement for Mot1 in vivo. J. Biol. Chem. 284, 4525–4535 (2009).

    Article  CAS  Google Scholar 

  37. Darst, R.P. et al. Mot1 regulates the DNA binding activity of free TATA-binding protein in an ATP-dependent manner. J. Biol. Chem. 278, 13216–13226 (2003).

    Article  CAS  Google Scholar 

  38. Vasiljeva, L., Kim, M., Terzi, N., Soares, L.M. & Buratowski, S. Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol. Cell 29, 313–323 (2008).

    Article  CAS  Google Scholar 

  39. Dudley, A.M., Rougeulle, C. & Winston, F. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev. 13, 2940–2945 (1999).

    Article  CAS  Google Scholar 

  40. Laprade, L., Rose, D. & Winston, F. Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8. Genetics 177, 2007–2017 (2007).

    Article  CAS  Google Scholar 

  41. Mohibullah, N. & Hahn, S. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev. 22, 2994–3006 (2008).

    Article  CAS  Google Scholar 

  42. Huisinga, K.L. & Pugh, B.F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13, 573–585 (2004).

    Article  CAS  Google Scholar 

  43. Venters, B.J. & Pugh, B.F. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371 (2009).

    Article  CAS  Google Scholar 

  44. Karpova, T.S. et al. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319, 466–469 (2008).

    Article  CAS  Google Scholar 

  45. Yao, J., Munson, K.M., Webb, W.W. & Lis, J.T. Dynamics of heat shock factor association with native gene loci in living cells. Nature 442, 1050–1053 (2006).

    Article  CAS  Google Scholar 

  46. Mitra, D., Parnell, E.J., Landon, J.W., Yu, Y. & Stillman, D.J. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol. Cell. Biol. 26, 4095–4110 (2006).

    Article  CAS  Google Scholar 

  47. Whitehouse, I., Rando, O.J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    Article  CAS  Google Scholar 

  48. Geisberg, J.V. & Struhl, K. Cellular stress alters the transcriptional properties of promoter-bound Mot1-TBP complexes. Mol. Cell 14, 479–489 (2004).

    Article  CAS  Google Scholar 

  49. Hsu, J.Y. et al. TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription. Genes Dev. 22, 2353–2358 (2008).

    Article  CAS  Google Scholar 

  50. Huisinga, K.L. & Pugh, B.F.A. TATA binding protein regulatory network that governs transcription complex assembly. Genome Biol. 8, R46 (2007).

    Article  Google Scholar 

  51. van Werven, F.J. & Timmers, H.T. The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation. Nucleic Acids Res. 34, e33 (2006).

    Article  Google Scholar 

  52. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  53. van Oevelen, C.J., van Teeffelen, H.A. & Timmers, H.T. Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation. Mol. Cell. Biol. 25, 4863–4872 (2005).

    Article  CAS  Google Scholar 

  54. van Bakel, H. et al. Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification. Nucleic Acids Res. 36, e21 (2008).

    Article  Google Scholar 

  55. Abascal, F., Carmona-Saez, P., Carazo, J.M. & Pascual-Montano, A. ChIPCodis: mining complex regulatory systems in yeast by concurrent enrichment analysis of ChIP-on-chip data. Bioinformatics 24, 1208–1209 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Groot Koerkamp, D. van Leenen and C. Ko of the University Medical Center (UMC) Utrecht and Utrecht University microarray facility for technical assistance. We are grateful to T. Weil (Vanderbilt University) for providing TBP antibodies. We also thank P. Lijnzaad and H. van Bakel for discussions and G. Spedale, P. Pijnappel and P. de Graaf for critical reading of this manuscript. This work is supported by grants (805.47.080, 825.06.033 and 700.57.302) of the Netherlands Organization for Scientific Research (NWO), the Netherlands Proteomics Centre (NPC) and the EU (Integrated Project EUTRACC, LSHG-CT-2007-037445).

Author information

Authors and Affiliations

Authors

Contributions

F.J.v.W. and H.Th.M.T. designed the experiments; F.J.W. and H.A.A.M.v.T. carried out the experiments; F.J.v.W. and H.Th.M.T. analyzed the data; F.C.P.H. provided advice on design of the experiments and data analysis; H.Th.M.T. supervised the experiments and data analysis; F.J.v.W. and H.Th.M.T. wrote the manuscript.

Corresponding author

Correspondence to H Th Marc Timmers.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Werven, F., van Teeffelen, H., Holstege, F. et al. Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat Struct Mol Biol 16, 1043–1048 (2009). https://doi.org/10.1038/nsmb.1674

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing