Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Following evolutionary paths to protein-protein interactions with high affinity and selectivity

Abstract

How do intricate multi-residue features such as protein-protein interfaces evolve? To address this question, we evolved a new colicin-immunity binding interaction. We started with Im9, which inhibits its cognate DNase ColE9 at 10−14 M affinity, and evolved it toward ColE7, which it inhibits promiscuously (Kd > 10−8 M). Iterative rounds of random mutagenesis and selection toward higher affinity for ColE7, and selectivity (against ColE9 inhibition), led to an 105-fold increase in affinity and a 108-fold increase in selectivity. Analysis of intermediates along the evolved variants revealed that changes in the binding configuration of the Im protein uncovered a latent set of interactions, thus providing the key to the rapid divergence of new Im7 variants. Overall, protein-protein interfaces seem to share the evolvability features of enzymes, that is, the exploitation of promiscuous interactions and alternative binding configurations via 'generalist' intermediates, and the key role of compensatory stabilizing mutations in facilitating the divergence of new functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The presumed genealogy of the in vitro evolution experiment.
Figure 2: Binding configurations of Im7 and Im9 variants.
Figure 3: The latent multipotency of Im9.
Figure 4: Intramolecular stabilizing interactions by residue 37 in wild-type Im9 (a, Val37) and the evolved variant R12-2 (b, Ile37).

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Dean, A.M. & Thornton, J.W. Mechanistic approaches to the study of evolution: the functional synthesis. Nat. Rev. Genet. 8, 675–688 (2007).

    Article  CAS  Google Scholar 

  2. Bridgham, J.T., Carroll, S.M. & Thornton, J.W. Evolution of hormone-receptor complexity by molecular exploitation. Science 312, 97–101 (2006).

    Article  CAS  Google Scholar 

  3. Miller, S.P., Lunzer, M. & Dean, A.M. Direct demonstration of an adaptive constraint. Science 314, 458–461 (2006).

    Article  CAS  Google Scholar 

  4. Weinreich, D.M., Delaney, N.F., Depristo, M.A. & Hartl, D.L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  Google Scholar 

  5. Ortlund, E.A., Bridgham, J.T., Redinbo, M.R. & Thornton, J.W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007).

    Article  CAS  Google Scholar 

  6. Yokoyama, S., Tada, T., Zhang, H. & Britt, L. Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc. Natl. Acad. Sci. USA 105, 13480–13485 (2008).

    Article  CAS  Google Scholar 

  7. Aharoni, A. et al. The 'evolvability' of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

    Article  CAS  Google Scholar 

  8. Matsumura, I. & Ellington, A.D. In vitro evolution of β-glucuronidase into a β-galactosidase proceeds through non-specific intermediates. J. Mol. Biol. 305, 331–339 (2001).

    Article  CAS  Google Scholar 

  9. Khersonsky, O., Roodveldt, C. & Tawfik, D.S. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr. Opin. Chem. Biol. 10, 498–508 (2006).

    Article  CAS  Google Scholar 

  10. Riley, M.A. Molecular mechanisms of colicin evolution. Mol. Biol. Evol. 10, 1380–1395 (1993).

    CAS  PubMed  Google Scholar 

  11. Riley, M.A. Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet. 32, 255–278 (1998).

    Article  CAS  Google Scholar 

  12. Kleanthous, C. & Walker, D. Immunity proteins: enzyme inhibitors that avoid the active site. Trends Biochem. Sci. 26, 624–631 (2001).

    Article  CAS  Google Scholar 

  13. Reichmann, D., Rahat, O., Cohen, M., Neuvirth, H. & Schreiber, G. The molecular architecture of protein-protein binding sites. Curr. Opin. Struct. Biol. 17, 67–76 (2007).

    Article  CAS  Google Scholar 

  14. Kühlmann, U.C., Pommer, A.J., Moore, G.R., James, R. & Kleanthous, C. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. J. Mol. Biol. 301, 1163–1178 (2000).

    Article  Google Scholar 

  15. Bernath, K., Magdassi, S. & Tawfik, D.S. Directed evolution of protein inhibitors of DNA-nucleases by in vitro compartmentalization (IVC) and nano-droplet delivery. J. Mol. Biol. 345, 1015–1026 (2005).

    Article  CAS  Google Scholar 

  16. Maté, M.J. & Kleanthous, C. Structure-based analysis of the metal-dependent mechanism of H-N-H endonucleases. J. Biol. Chem. 279, 34763–34769 (2004).

    Article  Google Scholar 

  17. Li, W., Dennis, C.A., Moore, G.R., James, R. & Kleanthous, C. Protein-protein interaction specificity of Im9 for the endonuclease toxin colicin E9 defined by homologue-scanning mutagenesis. J. Biol. Chem. 272, 22253–22258 (1997).

    Article  CAS  Google Scholar 

  18. Wallis, R. et al. In vivo and in vitro characterization of overproduced colicin E9 imunity protein. Eur. J. Biochem. 207, 687–695 (1992).

    Article  CAS  Google Scholar 

  19. Li, W. et al. Highly discriminating protein-protein interaction specificities in the context of a conserved binding energy hotspot. J. Mol. Biol. 337, 743–759 (2004).

    Article  CAS  Google Scholar 

  20. Keeble, A.H. & Kleanthous, C. The kinetic basis for dual recognition in colicin endonuclease-immunity protein complexes. J. Mol. Biol. 352, 656–671 (2005).

    Article  CAS  Google Scholar 

  21. Kleanthous, C. et al. Structural and mechanistic basis of immunity toward endonuclease colicins. Nat. Struct. Biol. 6, 243–252 (1999).

    Article  CAS  Google Scholar 

  22. Ko, T.P., Liao, C.C., Ku, W.Y., Chak, K.F. & Yuan, H.S. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure 7, 91–102 (1999).

    Article  CAS  Google Scholar 

  23. Lu, F.M., Yuan, H.S., Hsu, Y.C., Chang, S.J. & Chak, K.F. Hierarchical order of critical residues on the immunity-determining region of the Im7 protein which confer specific immunity to its cognate colicin. Biochem. Biophys. Res. Commun. 264, 69–75 (1999).

    Article  CAS  Google Scholar 

  24. Wallis, R. et al. Specificity in protein-protein recognition: conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex. Biochemistry 37, 476–485 (1998).

    Article  CAS  Google Scholar 

  25. Kortemme, T. et al. Computational redesign of protein-protein interaction specificity. Nat. Struct. Mol. Biol. 11, 371–379 (2004).

    Article  CAS  Google Scholar 

  26. Hiniker, A. et al. Laboratory evolution of one disulfide isomerase to resemble another. Proc. Natl. Acad. Sci. USA 104, 11670–11675 (2007).

    Article  CAS  Google Scholar 

  27. O'Maille, P.E. et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat. Chem. Biol. 4, 617–623 (2008).

    Article  CAS  Google Scholar 

  28. Foote, J. & Milstein, C. Conformational isomerism and the diversity of antibodies. Proc. Natl. Acad. Sci. USA 91, 10370–10374 (1994).

    Article  CAS  Google Scholar 

  29. Tokuriki, N. & Tawfik, D.S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Article  CAS  Google Scholar 

  30. Collins, C.H., Leadbetter, J.R. & Arnold, F.H. Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat. Biotechnol. 24, 708–712 (2006).

    Article  CAS  Google Scholar 

  31. Ferguson, N., Capaldi, A.P., James, R., Kleanthous, C. & Radford, S.E. Rapid folding with and without populated intermediates in the homologous four-helix proteins Im7 and Im9. J. Mol. Biol. 286, 1597–1608 (1999).

    Article  CAS  Google Scholar 

  32. Friel, C.T., Smith, D.A., Vendruscolo, M., Gsponer, J. & Radford, S.E. The mechanism of folding of Im7 reveals competition between functional and kinetic evolutionary constraints. Nat. Struct. Mol. Biol. 16, 318–324 (2009).

    Article  CAS  Google Scholar 

  33. Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D.S. How protein stability and new functions trade off. PLOS Comput. Biol. 4, e1000002 (2008).

    Article  Google Scholar 

  34. Bershtein, S., Goldin, K. & Tawfik, D.S. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379, 1029–1044 (2008).

    Article  CAS  Google Scholar 

  35. Wang, X., Minasov, G. & Shoichet, B.K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002).

    Article  CAS  Google Scholar 

  36. Tomatis, P.E. et al. Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility. Proc. Natl. Acad. Sci. USA 105, 20605–20610 (2008).

    Article  CAS  Google Scholar 

  37. Bloom, J.D., Labthavikul, S.T., Otey, C.R. & Arnold, F.H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  Google Scholar 

  38. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  39. Wallis, R. et al. Protein-protein interactions in colicin E9 DNase-immunity protein complexes. 2. Cognate and noncognate interactions that span the millimolar to femtomolar affinity range. Biochemistry 34, 13751–13759 (1995).

    Article  CAS  Google Scholar 

  40. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  41. French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A 34, 517–525 (1978).

    Article  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  44. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Israel Ministry of Science and Technology, the EU training network ProSA and the Sasson and Marjorie Peress Philanthropic Fund. We are grateful to G. Schreiber, O. Cohavi and M. Harel for their help in affinity measurements. C.K. acknowledges the UK Biotechnology and Biological Sciences Research Council for funding.

Author information

Authors and Affiliations

Authors

Contributions

K.B.L. performed the selections and variant characterization; O.D. and S.A. crystallized and solved the structures; S.M. participated in the development of the emulsion selections; A.H.K. and C.K. performed stopped-flow measurements; D.S.T. designed the experiments and analyzed the data; K.B.L., O.D. and D.S.T. wrote the manuscript.

Corresponding authors

Correspondence to Orly Dym or Dan S Tawfik.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 2983 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, K., Dym, O., Albeck, S. et al. Following evolutionary paths to protein-protein interactions with high affinity and selectivity. Nat Struct Mol Biol 16, 1049–1055 (2009). https://doi.org/10.1038/nsmb.1670

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing