Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Splice site strength–dependent activity and genetic buffering by poly-G runs

Abstract

Pre-mRNA splicing is regulated through the combinatorial activity of RNA motifs, including splice sites and splicing regulatory elements. Here we show that the activity of the G-run (polyguanine sequence) class of splicing enhancer elements is 4-fold higher when adjacent to intermediate strength 5′ splice sites (ss) than when adjacent to weak 5′ ss, and 1.3-fold higher relative to strong 5′ ss. We observed this dependence on 5′ ss strength in both splicing reporters and in global microarray and mRNA-Seq analyses of splicing changes following RNA interference against heterogeneous nuclear ribonucleoprotein (hnRNP) H, which cross-linked to G-runs adjacent to many regulated exons. An exon's responsiveness to changes in hnRNP H levels therefore depends in a complex way on G-run abundance and 5′ ss strength. This pattern of activity enables G-runs and hnRNP H to buffer the effects of 5′ ss mutations, augmenting both the frequency of 5′ ss polymorphism and the evolution of new splicing patterns. Certain other splicing factors may function similarly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abundance, conservation and 5′ ss strength–dependent activity of G-run ISEs.
Figure 2: hnRNP H knockdown and mRNA-Seq analysis of G-run activity.
Figure 3: Genetic buffering by G-runs.
Figure 4: Sequence conservation flanking exons is dependent on 5′ ss strength.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Modrek, B. & Lee, C.J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat. Genet. 34, 177–180 (2003).

    Article  CAS  Google Scholar 

  2. Lu, Z.X., Peng, J. & Su, B. A human-specific mutation leads to the origin of a novel splice form of neuropsin (KLK8), a gene involved in learning and memory. Hum. Mutat. 28, 978–984 (2007).

    Article  CAS  Google Scholar 

  3. Pan, Q. et al. Alternative splicing of conserved exons is frequently species-specific in human and mouse. Trends Genet. 21, 73–77 (2005).

    Article  CAS  Google Scholar 

  4. Wang, G.S. & Cooper, T.A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8, 749–761 (2007).

    Article  CAS  Google Scholar 

  5. Cooper, T.A., Wan, L. & Dreyfuss, G. RNA and disease. Cell 136, 777–793 (2009).

    Article  CAS  Google Scholar 

  6. Xiao, X., Wang, Z., Jang, M. & Burge, C.B. Coevolutionary networks of splicing cis-regulatory elements. Proc. Natl. Acad. Sci. 104, 18583–18588 (2007).

    Article  CAS  Google Scholar 

  7. McCullough, A.J. & Berget, S.M. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell. Biol. 17, 4562–4571 (1997).

    Article  CAS  Google Scholar 

  8. Fogel, B.L. & McNally, M.T. A cellular protein, hnRNP H, binds to the negative regulator of splicing element from Rous sarcoma virus. J. Biol. Chem. 275, 32371–32378 (2000).

    Article  CAS  Google Scholar 

  9. Hastings, M.L., Wilson, C.M. & Munroe, S.H. A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA. RNA 7, 859–874 (2001).

    Article  CAS  Google Scholar 

  10. Caputi, M. & Zahler, A.M. Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H′/F/2H9 family. J. Biol. Chem. 276, 43850–43859 (2001).

    Article  CAS  Google Scholar 

  11. Yeo, G., Hoon, S., Venkatesh, B. & Burge, C.B. Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc. Natl. Acad. Sci. USA 101, 15700–15705 (2004).

    Article  CAS  Google Scholar 

  12. McNally, L.M., Yee, L. & McNally, M.T. Heterogeneous nuclear ribonucleoprotein H is required for optimal U11 small nuclear ribonucleoprotein binding to a retroviral RNA-processing control element: implications for U12-dependent RNA splicing. J. Biol. Chem. 281, 2478–2488 (2006).

    Article  CAS  Google Scholar 

  13. Královicová, J. & Vorechovsky, I. Position-dependent repression and promotion of DQB1 intron 3 splicing by GGGG motifs. J. Immunol. 176, 2381–2388 (2006).

    Article  Google Scholar 

  14. Marcucci, R., Baralle, F.E. & Romano, M. Complex splicing control of the human Thrombopoietin gene by intronic G runs. Nucleic Acids Res. 35, 132–142 (2007).

    Article  CAS  Google Scholar 

  15. Mauger, D.M., Lin, C. & Garcia-Blanco, M.A. hnRNP H and hnRNP F complex with Fox2 to silence fibroblast growth factor receptor 2 exon IIIc. Mol. Cell. Biol. 28, 5403–5419 (2008).

    Article  CAS  Google Scholar 

  16. Dominguez, C. & Allain, F.H. NMR structure of the three quasi RNA recognition motifs (qRRMs) of human hnRNP F and interaction studies with Bcl-x G-tract RNA: a novel mode of RNA recognition. Nucleic Acids Res. 34, 3634–3645 (2006).

    Article  CAS  Google Scholar 

  17. Zhang, X.H., Leslie, C.S. & Chasin, L.A. Dichotomous splicing signals in exon flanks. Genome Res. 15, 768–779 (2005).

    Article  CAS  Google Scholar 

  18. Roca, X., Sachidanandam, R. & Krainer, A.R. Determinants of the inherent strength of human 5′ splice sites. RNA 11, 683–698 (2005).

    Article  CAS  Google Scholar 

  19. Yeo, G. & Burge, C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).

    Article  CAS  Google Scholar 

  20. Murray, J.I., Voelker, R.B., Henscheid, K.L., Warf, M.B. & Berglund, J.A. Identification of motifs that function in the splicing of non-canonical introns. Genome Biol. 9, R97 (2008).

    Article  Google Scholar 

  21. Han, K., Yeo, G., An, P., Burge, C.B. & Grabowski, P.J. A combinatorial code for splicing silencing: UAGG and GGGG motifs. PLoS Biol. 3, e158 (2005).

    Article  Google Scholar 

  22. Venables, J.P. et al. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol. Cell. Biol. 28, 6033–6043 (2008).

    Article  CAS  Google Scholar 

  23. Izquierdo, J.M. et al. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol. Cell 19, 475–484 (2005).

    Article  CAS  Google Scholar 

  24. Alkan, S.A., Martincic, K. & Milcarek, C. The hnRNPs F and H2 bind to similar sequences to influence gene expression. Biochem. J. 393, 361–371 (2006).

    Article  CAS  Google Scholar 

  25. Spellman, R., Llorian, M. & Smith, C.W. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol. Cell 27, 420–434 (2007).

    Article  CAS  Google Scholar 

  26. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  Google Scholar 

  27. Chen, C.D., Kobayashi, R. & Helfman, D.M. Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat β-tropomyosin gene. Genes Dev. 13, 593–606 (1999).

    Article  CAS  Google Scholar 

  28. Wang, Z. et al. Systematic identification and analysis of exonic splicing silencers. Cell 119, 831–845 (2004).

    Article  CAS  Google Scholar 

  29. Kim, D.H. et al. hnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic Acids Res. 33, 3866–3874 (2005).

    Article  CAS  Google Scholar 

  30. Paul, S. et al. Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J. 25, 4271–4283 (2006).

    Article  CAS  Google Scholar 

  31. Kondrashov, F.A. & Koonin, E.V. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences. Trends Genet. 19, 115–119 (2003).

    Article  CAS  Google Scholar 

  32. Honoré, B., Baandrup, U. & Vorum, H. Heterogeneous nuclear ribonucleoproteins F and H/H show differential expression in normal and selected cancer tissues. Exp. Cell Res. 294, 199–209 (2004).

    Article  Google Scholar 

  33. Modafferi, E.F. & Black, D.L. Combinatorial control of a neuron-specific exon. RNA 5, 687–706 (1999).

    Article  CAS  Google Scholar 

  34. Sorek, R., Shamir, R. & Ast, G. How prevalent is functional alternative splicing in the human genome? Trends Genet. 20, 68–71 (2004).

    Article  CAS  Google Scholar 

  35. Garg, K. & Green, P. Differing patterns of selection in alternative and constitutive splice sites. Genome Res. 17, 1015–1022 (2007).

    Article  CAS  Google Scholar 

  36. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  37. Del Gatto-Konczak, F. et al. The RNA-binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5′ splice site. Mol. Cell. Biol. 20, 6287–6299 (2000).

    Article  CAS  Google Scholar 

  38. Fairbrother, W.G., Yeh, R.F., Sharp, P.A. & Burge, C.B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).

    Article  CAS  Google Scholar 

  39. Faustino, N.A. & Cooper, T.A. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol. Cell. Biol. 25, 879–887 (2005).

    Article  CAS  Google Scholar 

  40. Smith, D.J., Query, C.C. & Konarska, M.M. “Nought may endure but mutability”: spliceosome dynamics and the regulation of splicing. Mol. Cell 30, 657–666 (2008).

    Article  CAS  Google Scholar 

  41. Crispino, J.D., Blencowe, B.J. & Sharp, P.A. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP. Science 265, 1866–1869 (1994).

    Article  CAS  Google Scholar 

  42. Tarn, W.Y. & Steitz, J.A. SR proteins can compensate for the loss of U1 snRNP functions in vitro. Genes Dev. 8, 2704–2717 (1994).

    Article  CAS  Google Scholar 

  43. Fukumura, K., Taniguchi, I., Sakamoto, H., Ohno, M. & Inoue, K. U1-independent pre-mRNA splicing contributes to the regulation of alternative splicing. Nucleic Acids Res. 37, 1907–1914 (2009).

    Article  CAS  Google Scholar 

  44. Maisnier-Patin, S. et al. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat. Genet. 37, 1376–1379 (2005).

    Article  CAS  Google Scholar 

  45. Rutherford, S.L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  Google Scholar 

  46. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  47. Jin, L. et al. The evolutionary relationship between gene duplication and alternative splicing. Gene 427, 19–31 (2008).

    Article  CAS  Google Scholar 

  48. Xing, Y. & Lee, C. Evidence of functional selection pressure for alternative splicing events that accelerate evolution of protein subsequences. Proc. Natl. Acad. Sci. USA 102, 13526–13531 (2005).

    Article  CAS  Google Scholar 

  49. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  Google Scholar 

  50. Schroth, G.P., Luo, S. & Khrebtukova, I. Methods Mol. Biol. (in the press).

  51. Wang, Z., Xiao, X., Van Nostrand, E. & Burge, C.B. General and specific functions of exonic splicing silencers in splicing control. Mol. Cell 23, 61–70 (2006).

    Article  CAS  Google Scholar 

  52. Kim, D.H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Allain and K. Lynch for helpful discussions, M. McNally, C. Nielsen, R. Sandberg, P. A. Sharp and members of the Burge laboratory for helpful comments on this manuscript and G.P. Schroth and his research group for high-throughput cDNA sequencing. This work was supported by postdoctoral fellowships from the American Heart Association (X.X.) and the Human Frontiers Science Program (R.N.), by a training grant from the US National Institutes of Health (NIH) (E.T.W.), by US National Science Foundation (NSF) equipment grant DBI-0821391 and by grants from the NIH (C.B.B.).

Author information

Authors and Affiliations

Authors

Contributions

X.X. designed and executed experiments and computational analyses, developed the evolutionary model, analyzed data and prepared the figures; Z.W. designed and conducted splicing reporter experiments and analyzed data; M.J. conducted cloning and splicing reporter experiments; R.N. designed and executed the RNAi and qRT-PCR experiments; E.T.W. designed and executed the CLIP-Seq experiments and related computational analyses; C.B.B. contributed to design of experiments and computational analyses and interpretation of data and wrote the paper with input from the other authors.

Corresponding author

Correspondence to Christopher B Burge.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Tables 1–7 and Supplementary Methods (PDF 1740 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Wang, Z., Jang, M. et al. Splice site strength–dependent activity and genetic buffering by poly-G runs. Nat Struct Mol Biol 16, 1094–1100 (2009). https://doi.org/10.1038/nsmb.1661

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1661

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing