Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation

Abstract

tRNA precursors undergo a maturation process, involving nucleotide modifications and folding into the L-shaped tertiary structure. The N1-methylguanosine at position 37 (m1G37), 3′ adjacent to the anticodon, is essential for translational fidelity and efficiency. In archaea and eukaryotes, Trm5 introduces the m1G37 modification into all tRNAs bearing G37. Here we report the crystal structures of archaeal Trm5 (aTrm5) in complex with tRNALeu or tRNACys. The D2-D3 domains of aTrm5 discover and modify G37, independently of the tRNA sequences. D1 is connected to D2-D3 through a flexible linker and is designed to recognize the shape of the tRNA outer corner, as a hallmark of the completed L shape formation. This interaction by D1 lowers the Km value for tRNA, enabling the D2-D3 catalysis. Thus, we propose that aTrm5 provides the tertiary structure checkpoint in tRNA maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall structures of the aTrm5–tRNA–AdoMet complexes.
Figure 2: G37 recognition mechanisms by D2-D3.
Figure 3: The anticodon arm and D stem recognition mechanism by D2-D3.
Figure 4: The recognition of the tRNA outer corner by D1.
Figure 5: The importance of the interaction between D1 and the outer corner of the tRNA.
Figure 6: The effects of other tRNA modifications.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Grosjean, H. Modification and editing of RNA: historical overview and important facts to remember. in Fine-Tuning of RNA Modifications and Editing 1–22 (CPL Press, Berks, UK, 2005).

    Chapter  Google Scholar 

  2. Kim, S.H. et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–440 (1974).

    Article  CAS  Google Scholar 

  3. Robertus, J.D. et al. Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546–551 (1974).

    Article  CAS  Google Scholar 

  4. Dirheimer, G., Keith, G., Dumas, P. & Westhof, E. Primary, secondary, and tertiary structures of tRNAs. in tRNA: Structure, Biosynthesis and Function (eds. Söll, D. & Raj Bhandary, U.L.) 93–126 (ASM, Washington DC, 1995).

    Chapter  Google Scholar 

  5. Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126, 1065–1077 (2006).

    Article  CAS  Google Scholar 

  6. Jühling, F. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159–D162 (2008).

    Article  Google Scholar 

  7. Yokoyama, S. & Nishimura, S. Modified nucleotides and codon recognition. in tRNA: Structure, Biosynthesis and Function (eds. Söll, D. & Raj Bhandary, U.L.) 207–224 (ASM, Washington DC, 1995).

    Chapter  Google Scholar 

  8. Björk, G.R. Biosynthesis and function of modified nucleosides. in tRNA: Structure, Biosynthesis and Function (eds. Söll, D. & Raj Bhandary, U.L.) 165–206 (ASM, Washington DC, 1995).

    Chapter  Google Scholar 

  9. Helm, M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res. 34, 721–733 (2006).

    Article  CAS  Google Scholar 

  10. Grosjean, H., Edqvist, J., Stråby, K.B. & Giegé, R. Enzymatic formation of modified nucleosides in tRNA: dependence on tRNA architecture. J. Mol. Biol. 255, 67–85 (1996).

    Article  CAS  Google Scholar 

  11. Xie, W., Liu, X. & Huang, R.H. Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat. Struct. Biol. 10, 781–788 (2003).

    Article  CAS  Google Scholar 

  12. Losey, H.C., Ruthenburg, A.J. & Verdine, G.L. Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat. Struct. Mol. Biol. 13, 153–159 (2006).

    Article  CAS  Google Scholar 

  13. Seif, E. & Hallberg, B.M. RNA-protein mutually induced fit: structure of E. coli isopentenyl-tRNA transferase in complex with tRNAPhe. J. Biol. Chem. 284, 6600–6604 (2009).

    Article  CAS  Google Scholar 

  14. Hoang, C. & Ferre-D'Amare, A.R. Cocrystal structure of a tRNA ψψ55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929–939 (2001).

    Article  CAS  Google Scholar 

  15. Ishitani, R. et al. Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme. Cell 113, 383–394 (2003).

    Article  CAS  Google Scholar 

  16. Alian, A., Lee, T.T., Griner, S.L., Stroud, R.M. & Finer-Moore, J. Structure of a TrmA-RNA complex: a consensus RNA fold contributes to substrate selectivity and catalysis in m5U methyltransferases. Proc. Natl. Acad. Sci. USA 105, 6876–6881 (2008).

    Article  CAS  Google Scholar 

  17. Hur, S. & Stroud, R.M. How U38, 39, and 40 of many tRNAs become the targets for pseudouridylation by TruA. Mol. Cell 26, 189–203 (2007).

    Article  CAS  Google Scholar 

  18. Björk, G.R., Wikström, P.M. & Byström, A.S. Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. Science 244, 986–989 (1989).

    Article  Google Scholar 

  19. Hagervall, T.G., Tuohy, T.M., Atkins, J.F. & Björk, G.R. Deficiency of 1-methylguanosine in tRNA from Salmonella typhimurium induces frameshifting by quadruplet translocation. J. Mol. Biol. 232, 756–765 (1993).

    Article  CAS  Google Scholar 

  20. Li, J., Esberg, B., Curran, J.F. & Björk, G.R. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. J. Mol. Biol. 271, 209–221 (1997).

    Article  CAS  Google Scholar 

  21. Urbonavičius, J., Qian, Q., Durand, J.M., Hagervall, T.G. & Björk, G.R. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 20, 4863–4873 (2001).

    Article  Google Scholar 

  22. Zhang, C.M., Liu, C., Slater, S. & Hou, Y.M. Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNACys. Nat. Struct. Mol. Biol. 15, 507–514 (2008).

    Article  CAS  Google Scholar 

  23. Hauenstein, S.I. & Perona, J.J. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei. J. Biol. Chem. 283, 22007–22017 (2008).

    Article  CAS  Google Scholar 

  24. Perret, V. et al. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature 344, 787–789 (1990).

    Article  CAS  Google Scholar 

  25. Björk, G.R. & Kjellin-Stråby, K. Escherichia coli mutants with defects in the biosynthesis of 5-methylaminomethyl-2-thio-uridine or 1-methylguanosine in their tRNA. J. Bacteriol. 133, 508–517 (1978).

    PubMed  PubMed Central  Google Scholar 

  26. Byström, A.S. & Björk, G.R. Chromosomal location and cloning of the gene (trmD) responsible for the synthesis of tRNA (m1G) methyltransferase in Escherichia coli K-12. Mol. Gen. Genet. 188, 440–446 (1982).

    Article  Google Scholar 

  27. Christian, T., Evilia, C., Williams, S. & Hou, Y.M. Distinct origins of tRNA(m1G37) methyltransferase. J. Mol. Biol. 339, 707–719 (2004).

    Article  CAS  Google Scholar 

  28. Björk, G.R. et al. A primordial tRNA modification required for the evolution of life? EMBO J. 20, 231–239 (2001).

    Article  Google Scholar 

  29. Brulé, H., Elliott, M., Redlak, M., Zehner, Z.E. & Holmes, W.M. Isolation and characterization of the human tRNA-(N1G37) methyltransferase (TRM5) and comparison to the Escherichia coli TrmD protein. Biochemistry 43, 9243–9255 (2004).

    Article  Google Scholar 

  30. Ahn, H.J. et al. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. EMBO J. 22, 2593–2603 (2003).

    Article  CAS  Google Scholar 

  31. Liu, J. et al. Crystal structure of tRNA (m1G37) methyltransferase from Aquifex aeolicus at 2.6 Å resolution: a novel methyltransferase fold. Proteins 53, 326–328 (2003).

    Article  CAS  Google Scholar 

  32. Elkins, P.A. et al. Insights into catalysis by a knotted TrmD tRNA methyltransferase. J. Mol. Biol. 333, 931–949 (2003).

    Article  CAS  Google Scholar 

  33. Goto-Ito, S. et al. Crystal structure of archaeal tRNA(m1G37)methyltransferase aTrm5. Proteins 72, 1274–1289 (2008).

    Article  CAS  Google Scholar 

  34. Christian, T., Evilia, C. & Hou, Y.M. Catalysis by the second class of tRNA(m1G37) methyl transferase requires a conserved proline. Biochemistry 45, 7463–7473 (2006).

    Article  CAS  Google Scholar 

  35. Christian, T. & Hou, Y.M. Distinct determinants of tRNA recognition by the TrmD and Trm5 methyl transferases. J. Mol. Biol. 373, 623–632 (2007).

    Article  CAS  Google Scholar 

  36. Watanabe, M. et al. Biosynthesis of archaeosine, a novel derivative of 7-deazaguanosine specific to archaeal tRNA, proceeds via a pathway involving base replacement on the tRNA polynucleotide chain. J. Biol. Chem. 272, 20146–20151 (1997).

    Article  CAS  Google Scholar 

  37. Kuratani, M., Bessho, Y., Nishimoto, M., Grosjean, H. & Yokoyama, S. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2′-O-methylcytidine at position 56 of tRNA. J. Mol. Biol. 375, 1064–1075 (2008).

    Article  CAS  Google Scholar 

  38. Grosjean, H. et al. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 78, 488–501 (1996).

    Article  CAS  Google Scholar 

  39. Strobel, M.C. & Abelson, J. Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUP53 tRNA in vitro and in vivo. Mol. Cell. Biol. 6, 2663–2673 (1986).

    Article  CAS  Google Scholar 

  40. Grosjean, H., Droogmans, L., Giegé, R. & Uhlenbeck, O.C. Guanosine modifications in runoff transcripts of synthetic transfer RNA-Phe genes microinjected into Xenopus oocytes. Biochim. Biophys. Acta 1050, 267–273 (1990).

    Article  CAS  Google Scholar 

  41. Hall, K.B., Sampson, J.R., Uhlenbeck, O.C. & Redfield, A.G. Structure of an unmodified tRNA molecule. Biochemistry 28, 5794–5801 (1989).

    Article  CAS  Google Scholar 

  42. Derrick, W.B. & Horowitz, J. Probing structural differences between native and in vitro transcribed Escherichia coli valine transfer RNA: evidence for stable base modification-dependent conformers. Nucleic Acids Res. 21, 4948–4953 (1993).

    Article  CAS  Google Scholar 

  43. Perret, V. et al. Conformation in solution of yeast tRNAAsp transcripts deprived of modified nucleotides. Biochimie 72, 735–743 (1990).

    Article  CAS  Google Scholar 

  44. Urbonavičius, J., Durand, J.M. & Björk, G.R. Three modifications in the D and T arms of tRNA influence translation in Escherichia coli and expression of virulence genes in Shigella flexneri. J. Bacteriol. 184, 5348–5357 (2002).

    Article  Google Scholar 

  45. Li de la Sierra-Gallay, I., Mathy, N., Pellegrini, O. & Condon, C. Structure of the ubiquitous 3′ processing enzyme RNase Z bound to transfer RNA. Nat. Struct. Mol. Biol. 13, 376–377 (2006).

    Article  Google Scholar 

  46. Minagawa, A., Ishii, R., Takaku, H., Yokoyama, S. & Nashimoto, M. The flexible arm of tRNase Z is not essential for pre-tRNA binding but affects cleavage site selection. J. Mol. Biol. 381, 289–299 (2008).

    Article  CAS  Google Scholar 

  47. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science 263, 1404–1410 (1994).

    Article  CAS  Google Scholar 

  48. Goldgur, Y. et al. The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe. Structure 5, 59–68 (1997).

    Article  CAS  Google Scholar 

  49. Delagoutte, B., Moras, D. & Cavarelli, J. tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding. EMBO J. 19, 5599–5610 (2000).

    Article  CAS  Google Scholar 

  50. Fukai, S. et al. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNAVal and valyl-tRNA synthetase. Cell 103, 793–803 (2000).

    Article  CAS  Google Scholar 

  51. Fukai, S. et al. Mechanism of molecular interactions for tRNAVal recognition by valyl-tRNA synthetase. RNA 9, 100–111 (2003).

    Article  CAS  Google Scholar 

  52. Walter, T.S. et al. Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14, 1617–1622 (2006).

    Article  CAS  Google Scholar 

  53. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  54. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  55. Fukunaga, R. & Yokoyama, S. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition. Nat. Struct. Mol. Biol. 12, 915–922 (2005).

    Article  CAS  Google Scholar 

  56. Adams, P.D., Pannu, N.S., Read, R.J. & Brünger, A.T. Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc. Natl. Acad. Sci. USA 94, 5018–5023 (1997).

    Article  CAS  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Kimoto and I. Hirao for their assistance with the melting temperature measurements. We also thank S. Sekine for his help in collecting diffraction data and the staff of the beamlines BL41XU at SPring-8 (Harima, Japan) and NW12A at the Photon Factory (Tsukuba, Japan) for their support during data collection. This work was supported by the Targeted Proteins Research Program (TPRP) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT), Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS) and MEXT, the 21st century COE program (Promotion of Basic Biosciences for the Understanding of Organisms' Uniqueness) and the Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms) from MEXT. S.G.-I. was supported by the 21st century COE Program, the Global COE Program and the Research Fellowship for Young Scientists from JSPS, and M.K. was supported by the Research Fellowship for Young Scientists from JSPS.

Author information

Authors and Affiliations

Authors

Contributions

S.G.-I. performed the sample preparation of aTrm5 and tRNAs, the crystal structure determinations and the biochemical assays; T.I. provided advice and helped with the experiments; M.K. prepared aTrm56 and ArcTGT; all authors discussed the results. S.G.-I., T.I. and S.Y. wrote the manuscript; S.Y. supervised the work.

Corresponding author

Correspondence to Shigeyuki Yokoyama.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Discussion (PDF 7531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto-Ito, S., Ito, T., Kuratani, M. et al. Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Nat Struct Mol Biol 16, 1109–1115 (2009). https://doi.org/10.1038/nsmb.1653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing