Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antisense transcripts are targets for activating small RNAs

Abstract

Agents that activate expression of specific genes to probe cellular pathways or alleviate disease would go beyond existing approaches for controlling gene expression. Duplex RNAs complementary to promoter regions can repress or activate gene expression. The mechanism of these promoter-directed antigene RNAs (agRNAs) has been obscure. Other work has revealed noncoding transcripts that overlap mRNAs. The function of these noncoding transcripts is also not understood. Here we link these two sets of enigmatic results. We find that antisense transcripts are the target for agRNAs that activate or repress expression of progesterone receptor (PR). agRNAs recruit Argonaute proteins to PR antisense transcripts and shift localization of the heterogeneous nuclear ribonucleoprotein-k, RNA polymerase II and heterochromatin protein 1γ. Our data demonstrate that antisense transcripts have a central role in recognition of the PR promoter by both activating and inhibitory agRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antisense transcription at the PR promoter.
Figure 2: Expression levels of antisense transcript AT2.
Figure 3: Gene activation by agRNAs was reversed by single-stranded oligonucleotides that target the antisense transcript.
Figure 4: Binding of biotinylated agRNAs to PR antisense transcript AT2.
Figure 5: Association of AGO proteins, hnRNP-K and HP1γ with PR antisense transcript AT2 examined by RIP.
Figure 6: Factors that associate with gene promoters during agRNA-mediated gene activation or silencing.

Similar content being viewed by others

References

  1. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  Google Scholar 

  2. Ting, A.H., Schuebel, K.E., Herman, J.G. & Baylin, S.B. Short double-stranded RNA induces transcriptional gene silencing in human cells in the absence of DNA methylation. Nat. Genet. 37, 906–910 (2005).

    Article  CAS  Google Scholar 

  3. Janowski, B.A. et al. Inhibition of gene expression at transcription start sites using antigene RNAs (agRNAs). Nat. Chem. Biol. 1, 216–222 (2005).

    Article  CAS  Google Scholar 

  4. Janowski, B.A. et al. Involvement of Ago1 and Ago2 in mammalian transcriptional silencing. Nat. Struct. Mol. Biol. 13, 787–792 (2006).

    Article  CAS  Google Scholar 

  5. Kim, D.H., Villeneuve, L.M., Morris, K.V. & Rossi, J.J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 13, 793–797 (2006).

    Article  CAS  Google Scholar 

  6. Li, L.C. et al. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl. Acad. Sci. USA 103, 17337–17342 (2006).

    Article  CAS  Google Scholar 

  7. Janowski, B.A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat. Chem. Biol. 3, 166–173 (2007).

    Article  CAS  Google Scholar 

  8. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  Google Scholar 

  9. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  Google Scholar 

  10. Kastner, P. et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9, 1603–1614 (1990).

    Article  CAS  Google Scholar 

  11. Corey, D.R. RNAi learns from antisense. Nat. Chem. Biol. 3, 8–11 (2007).

    Article  CAS  Google Scholar 

  12. Grewal, S.I.S. & Elgin, S.C.R. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).

    Article  CAS  Google Scholar 

  13. Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  CAS  Google Scholar 

  14. Nelson, P.T. et al. A novel monoclonal antibody against human Argonaute proteins reveals unexpected characteristics of miRNAs in human blood cells. RNA 13, 1787–1792 (2007).

    Article  CAS  Google Scholar 

  15. Gilbert, C., Kristjuhan, A., Winkler, G.S. & Svejstrup, J.Q. Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol. Cell 14, 457–464 (2004).

    Article  CAS  Google Scholar 

  16. Bomsztyk, K., Denisenko, O. & Ostrowski, J. hnRNP K: one protein, multiple processes. Bioessays 26, 629–638 (2004).

    Article  CAS  Google Scholar 

  17. Zofall, M. & Grewal, S.L. Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol. Cell 22, 681–692 (2006).

    Article  CAS  Google Scholar 

  18. Vakoc, C.R., Mandat, S.A., Olenchock, B.A. & Blobel, G.A. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).

    Article  CAS  Google Scholar 

  19. Eissenberg, J.C. & Shilatifard, A. Leaving a mark: the many footprints of the elongating RNA polymerase II. Curr. Opin. Genet. Dev. 16, 184–190 (2006).

    Article  CAS  Google Scholar 

  20. Smallwood, A., Black, J.C., Tanese, N., Pradan, S. & Carey, M. HP1-mediated silencing targets PolII coactivator complexes. Nat. Struct. Mol. Biol. 15, 318–320 (2008).

    Article  CAS  Google Scholar 

  21. Check, E. RNA interference: hitting the switch. Nature 448, 855–858 (2007).

    Article  CAS  Google Scholar 

  22. Lee, Y.J. & Gorski, J. Estrogen-induced transcription of the progesterone receptor gene does not parallel estrogen receptor occupancy. Proc. Natl. Acad. Sci. USA 93, 15180–15184 (1996).

    Article  CAS  Google Scholar 

  23. Hurd, C. et al. Hormonal regulation of the p53 tumor suppressor protein in T47D human breast carcinoma cell line. J. Biol. Chem. 270, 28507–28510 (1995).

    Article  CAS  Google Scholar 

  24. RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) and the FANTOM Consortium. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

  25. ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  26. Gingeras, T.R. Origin of phenotypes: genes and transcripts. Genome Res. 17, 682–690 (2007).

    Article  CAS  Google Scholar 

  27. Nicolas, E. et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat. Struct. Mol. Biol. 14, 372–380 (2007).

    Article  CAS  Google Scholar 

  28. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  Google Scholar 

  29. Mattick, J.S. A new paradigm for developmental biology. J. Exp. Biol. 210, 1526–1547 (2007).

    Article  Google Scholar 

  30. Vasudevan, S., Tong, Y. & Steitz, J.A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    Article  CAS  Google Scholar 

  31. Martianov, I. et al. Repression of the human dihydrofolate reducase gene by a noncoding interfering transcript. Nature 445, 666–700 (2007).

    Article  CAS  Google Scholar 

  32. Han, J., Kim, D. & Morris, K.V. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc. Natl. Acad. Sci. USA 104, 12422–12427 (2007).

    Article  CAS  Google Scholar 

  33. Janowski, B.A., Hu, J. & Corey, D.R. Antigene inhibition by peptide nucleic acids and duplex RNAs. Nat. Protocols 1, 436–443 (2006).

    Article  CAS  Google Scholar 

  34. Hardy, D.B., Janowski, B.A., Corey, D.R. & Mendelson, C.R. Progesterone impairs the interleukin-1β stimulation of cyclooxygenase 2 (COX-2) gene expression in human myometrial cells. Mol. Endocrinol. 20, 2724–2733 (2006).

    Article  CAS  Google Scholar 

  35. Mizuno, Y. et al. Increased specificity of reverse transcription priming of trehalose and oligo-blockers allows high efficiency window separation of mRNA display. Nucleic Acids Res. 27, 1345–1349 (1999).

    Article  CAS  Google Scholar 

  36. Kraynack, B.A. & Baker, B.F. Small interfering RNAs containing full 2′-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA 12, 163–176 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (NIGMS 60642, 77253 and 73042 to D.R.C. and EB 05556 to J.C.S.) and Robert A. Welch Foundation (I-1244). We thank Z. Mourelatos (University of Pennsylvania) for providing anti-AGO antibody and D. Shames for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.C.S., S.T.Y., N.-B.N., D.B.H. and B.A.J. designed and performed experiments. B.P.M. synthesized single-stranded oligonucleotides for inhibiting expression of PR antisense transcript. D.R.C. and B.A.J. supervised experiments.

Corresponding authors

Correspondence to David R Corey or Bethany A Janowski.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, J., Younger, S., Nguyen, NB. et al. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15, 842–848 (2008). https://doi.org/10.1038/nsmb.1444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing