Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Capped small RNAs and MOV10 in human hepatitis delta virus replication

This article has been updated

Abstract

The evolutionary origin of human hepatitis delta virus (HDV) replication by RNA-directed transcription is unclear. Here we identify two species of 5′-capped, 18–25-nucleotide small RNAs. One was of antigenomic polarity, corresponding to the 5′ end of hepatitis delta antigen (HDAg) mRNA, and interacted with HDAg and RNA polymerase II (Pol II), whereas the other mapped to a structurally analogous region on the genomic RNA hairpin. An HDAg-interaction screen indicated that HDAg interacts with MOV10, the human homolog of the Arabidopsis thaliana RNA amplification factor gene SDE3 and Drosophila melanogaster RISC-maturation factor gene Armitage (armi). MOV10 knockdown inhibited HDV replication, but not HDAg mRNA translation, further supporting a role for MOV10 in RNA-directed transcription. Together, our studies define RNA hairpins as critical elements for the initiation of HDV-related, RNA-directed transcription. The identification of capped small RNAs and the involvement of MOV10 in HDV replication further suggest a conserved mechanism related to RNA-directed transcription in lower eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery and mapping of an HDV-derived small RNA.
Figure 2: The antigenomic HDV small RNA is 2′-3′-hydroxylated and has an mRNA-like 5′ cap (northern blot, 293 cells, RNA induction).
Figure 3: Cloning and characterization of an HDV small RNA of genomic polarity.
Figure 4: Role for MOV10 in HDV replication.

Similar content being viewed by others

Change history

  • 22 June 2008

    In the version of this article initially published online, the top panel in Figure 3d was mistakenly replaced with a panel from Figure 3c. The error has been corrected for all versions of this article.

References

  1. Wassenegger, M. & Krczal, G. Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci. 11, 142–151 (2006).

    Article  CAS  Google Scholar 

  2. Taylor, J.M. Structure and replication of hepatitis delta virus RNA. Curr. Top. Microbiol. Immunol. 307, 1–23 (2006).

    CAS  PubMed  Google Scholar 

  3. Macnaughton, T.B. & Lai, M.M. HDV RNA replication: ancient relic or primer? Curr. Top. Microbiol. Immunol. 307, 25–45 (2006).

    CAS  PubMed  Google Scholar 

  4. Dalmay, T., Horsefield, R., Braunstein, T.H. & Baulcombe, D.C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis . EMBO J. 20, 2069–2078 (2001).

    Article  CAS  Google Scholar 

  5. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831–841 (2004).

    Article  CAS  Google Scholar 

  6. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  Google Scholar 

  7. Hsieh, S.Y., Chao, M., Coates, L. & Taylor, J. Hepatitis delta virus genome replication: a polyadenylated mRNA for delta antigen. J. Virol. 64, 3192–3198 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Modahl, L.E. & Lai, M.M. Transcription of hepatitis delta antigen mRNA continues throughout hepatitis delta virus (HDV) replication: a new model of HDV RNA transcription and replication. J. Virol. 72, 5449–5456 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gudima, S., Dingle, K., Wu, T.T., Moraleda, G. & Taylor, J. Characterization of the 5′ ends for polyadenylated RNAs synthesized during the replication of hepatitis delta virus. J. Virol. 73, 6533–6539 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Macnaughton, T.B., Shi, S.T., Modahl, L.E. & Lai, M.M. Rolling circle replication of hepatitis delta virus RNA is carried out by two different cellular RNA polymerases. J. Virol. 76, 3920–3927 (2002).

    Article  CAS  Google Scholar 

  11. Chang, J., Nie, X., Chang, H.E., Han, Z. & Taylor, J. Transcription of hepatitis delta virus RNA by RNA polymerase II. J. Virol. 82, 1118–1127 (2007).

    Article  Google Scholar 

  12. Greco-Stewart, V.S., Miron, P., Abrahem, A. & Pelchat, M. The human RNA polymerase II interacts with the terminal stem-loop regions of the hepatitis delta virus RNA genome. Virology 357, 68–78 (2006).

    Article  Google Scholar 

  13. Chapman, E.J. & Carrington, J.C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 8, 884–896 (2007).

    Article  CAS  Google Scholar 

  14. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans . Science 315, 241–244 (2007).

    Article  CAS  Google Scholar 

  15. Beard, M.R., MacNaughton, T.B. & Gowans, E.B. Identification and characterization of a hepatitis delta virus RNA transcriptional promoter. J. Virol. 70, 4986–4995 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  Google Scholar 

  17. Lee, C.Y., Lee, A. & Chanfreau, G. The roles of endonucleolytic cleavage and exonucleolytic digestion in the 5′-end processing of S. cerevisiae box C/D snoRNAs. RNA 9, 1362–1370 (2003).

    Article  CAS  Google Scholar 

  18. Nykänen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    Article  Google Scholar 

  19. Chendrimada, T.P. et al. MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823–828 (2007).

    Article  CAS  Google Scholar 

  20. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005).

    Article  Google Scholar 

  21. Modahl, L.E., MacNaughton, T.B., Zhu, N., Johnson, D.L. & Lai, M.M. RNA-dependent replication and transcription of hepatitis delta virus RNA involve distinct cellular RNA polymerases. Mol. Cell. Biol. 20, 6030–6039 (2000).

    Article  CAS  Google Scholar 

  22. Filipovska, J. & Konarska, M.M. Specific HDV RNA-templated transcription by Pol II in vitro. RNA 6, 41–54 (2000).

    Article  CAS  Google Scholar 

  23. Lehmann, E., Brueckner, F. & Cramer, P. Molecular basis of RNA-dependent RNA polymerase II activity. Nature 450, 445–459 (2007).

    Article  CAS  Google Scholar 

  24. Sato, S., Cornillez-Ty, C. & Lazinski, D.W. By inhibiting replication, the large hepatitis delta antigen can indirectly regulate amber/W editing and its own expression. J. Virol. 78, 8120–8134 (2004).

    Article  CAS  Google Scholar 

  25. Tavanez, J.P. et al. Hepatitis delta virus ribonucleoproteins shuttle between the nucleus and the cytoplasm. RNA 8, 637–646 (2002).

    Article  CAS  Google Scholar 

  26. Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K. & Tabara, H. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans . EMBO J. 26, 5007–5019 (2007).

    Article  CAS  Google Scholar 

  27. Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  Google Scholar 

  28. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    Article  CAS  Google Scholar 

  29. Sureau, C., Guerra, B. & Lanford, R.E. Role of the large hepatitis B virus envelope protein in infectivity of the hepatitis delta virion. J. Virol. 67, 366–372 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Haussecker, D. & Proudfoot, N.J. Dicer-dependent turnover of intergenic transcripts from the human beta-globin gene cluster. Mol. Cell. Biol. 25, 9724–9733 (2005).

    Article  CAS  Google Scholar 

  31. Gregory, R.I., Chendrimada, T.P. & Shiekhattar, R. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol. Biol. 342, 33–47 (2006).

    CAS  PubMed  Google Scholar 

  32. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans . Science 294, 858–862 (2001).

    Article  CAS  Google Scholar 

  33. Parameswaran, P. et al. A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res. 35, e130 (2007).

    Article  Google Scholar 

  34. Kuo, M.Y. et al. Molecular cloning of hepatitis delta virus RNA from an infected woodchuck liver: sequence, structure, and applications. J. Virol. 62, 1855–1861 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Glenn (Stanford University) for reagents, R. Lanford (Southwest Foundation for Biomedical Research, San Antonio) for HDV virions and A. Guzzetta (Stanford University) for mass spectrometry. This work was supported by grants DK78424 and AI71068 from the National Institutes of Health (to M.A.K.), a Helen Hay Whitney Foundation Postdoctoral Research Fellowship to D.C. and a Stanford Dean's Postdoctoral Fellowship to D.H.

Author information

Authors and Affiliations

Authors

Contributions

D.H. designed and performed the majority of the experiments. D.C. did the proteomic screens and contributed to the immunoprecipitation experiments. Y.H. assisted D.H. in performing the experiments. P.P. did the small RNA sequencing. A.Z.F. provided input on sequencing strategies and suggestions in experimental design. M.A.K. served as supervisor and provided scientific input to experimental design and data interpretation. D.H. wrote the manuscript with input from D.C., P.P., A.Z.F. and M.A.K. All authors approved the final manuscript.

Corresponding author

Correspondence to Mark A Kay.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1 and Supplementary Methods (PDF 409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haussecker, D., Cao, D., Huang, Y. et al. Capped small RNAs and MOV10 in human hepatitis delta virus replication. Nat Struct Mol Biol 15, 714–721 (2008). https://doi.org/10.1038/nsmb.1440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing