Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A conserved rRNA methyltransferase regulates ribosome biogenesis

Abstract

In contrast to the diversity of most ribosomal RNA modification patterns and systems, the KsgA methyltransferase family seems to be nearly universally conserved along with the modifications it catalyzes. Our data reveal that KsgA interacts with small ribosomal subunits near functional sites, including Initiation factor 3 and 50S subunit binding sites. These findings suggest a checkpoint role for this modification system and offer a functional rationale for the unprecedented level of conservation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Directed hydroxyl radical probing of 30S subunits from KsgA.
Figure 2: Solution hydroxyl radical footprinting of KsgA on 30S subunits analyzed by primer extension.
Figure 3: A model of KsgA–30S subunit interaction.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Van Knippenberg, P.H., Van Kimmenade, J.M. & Heus, H.A. Nucleic Acids Res. 12, 2595–2604 (1984).

    Article  CAS  Google Scholar 

  2. Noon, K.R., Bruenger, E. & McCloskey, J.A. J. Bacteriol. 180, 2883–2888 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Buul, C.P., Hamersma, M., Visser, W. & Van Knippenberg, P.H. Nucleic Acids Res. 12, 9205–9208 (1984).

    Article  CAS  Google Scholar 

  4. Klootwijk, J., Klein, I. & Grivell, L.A. J. Mol. Biol. 97, 337–350 (1975).

    Article  CAS  Google Scholar 

  5. Helser, T.L., Davies, J.E. & Dahlberg, J.E. Nat. New Biol. 235, 6–9 (1972).

    Article  CAS  Google Scholar 

  6. Desai, P.M. & Rife, J.P. Arch. Biochem. Biophys. 449, 57–63 (2006).

    Article  CAS  Google Scholar 

  7. O'Farrell, H.C., Scarsdale, J.N. & Rife, J.P. J. Mol. Biol. 339, 337–353 (2004).

    Article  CAS  Google Scholar 

  8. Schuwirth, B.S. et al. Science 310, 827–834 (2005).

    Article  CAS  Google Scholar 

  9. Culver, G.M. & Noller, H.F. Methods Enzymol. 318, 461–475 (2000).

    Article  CAS  Google Scholar 

  10. Moazed, D., Van Stolk, B.J., Douthwaite, S. & Noller, H.F. J. Mol. Biol. 191, 483–493 (1986).

    Article  CAS  Google Scholar 

  11. Dallas, A. & Noller, H.F. Mol. Cell 8, 855–864 (2001).

    Article  CAS  Google Scholar 

  12. Merryman, C., Moazed, D., McWhirter, J. & Noller, H.F. J. Mol. Biol. 285, 97–105 (1999).

    Article  CAS  Google Scholar 

  13. Poldermans, B., Goosen, N. & Van Knippenberg, P.H. J. Biol. Chem. 254, 9085–9089 (1979).

    CAS  PubMed  Google Scholar 

  14. Lafontaine, D., Vandenhaute, J. & Tollervey, D. Genes Dev. 9, 2470–2481 (1995).

    Article  CAS  Google Scholar 

  15. Lafontaine, D.L., Preiss, T. & Tollervey, D. Mol. Cell. Biol. 18, 2360–2370 (1998).

    Article  CAS  Google Scholar 

  16. O'Farrell, H.C., Pulicherla, N., Desai, P.M. & Rife, J.P. RNA 12, 725–733 (2006).

    Article  CAS  Google Scholar 

  17. Lomakin, I.B., Shirokikh, N.E., Yusupov, M.M., Hellen, C.U. & Pestova, T.V. EMBO J. 25, 196–210 (2006).

    Article  CAS  Google Scholar 

  18. Cannone, J.J. et al. BMC Bioinformatics 3, 2 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Phizicky and the members of the Rife and Culver laboratories for comments on the manuscript. We thank H. Noller (University of California, Santa Cruz, USA) for supplying the IF3 plasmid. This work was supported by the US National Institute of Health grants GM066900 to J.P.R. and GM62432 to G.M.C.

Author information

Authors and Affiliations

Authors

Contributions

Z.X. designed and performed experiments; H.C.O. purified KsgA proteins; J.P.R. docked KsgA on 30S subunits; G.M.C. supervised the experiments. All authors discussed results and contributed to the manuscript.

Corresponding author

Correspondence to Gloria M Culver.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Table 1 and Supplementary Methods (PDF 2933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., O'Farrell, H., Rife, J. et al. A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 15, 534–536 (2008). https://doi.org/10.1038/nsmb.1408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing