Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule studies of fork dynamics in Escherichia coli DNA replication

A Corrigendum to this article was published on 01 September 2008

This article has been updated

Abstract

We present single-molecule studies of the Escherichia coli replication machinery. We visualize individual E. coli DNA polymerase III (Pol III) holoenzymes engaging in primer extension and leading-strand synthesis. When coupled to the replicative helicase DnaB, Pol III mediates leading-strand synthesis with a processivity of 10.5 kilobases (kb), eight-fold higher than that by Pol III alone. Addition of the primase DnaG causes a three-fold reduction in the processivity of leading-strand synthesis, an effect dependent upon the DnaB-DnaG protein-protein interaction rather than primase activity. A single-molecule analysis of the replication kinetics with varying DnaG concentrations indicates that a cooperative binding of two or three DnaG monomers to DnaB halts synthesis. Modulation of DnaB helicase activity through the interaction with DnaG suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during slow primer synthesis on the lagging strand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the E. coli replisome mediating coordinated DNA synthesis.
Figure 2: Single-molecule experimental setup.
Figure 3: Primer extension by the DNA polymerase III holoenzyme.
Figure 4: Leading-strand synthesis by Pol III holoenzyme coupled with DnaB helicase.
Figure 5: Replicative abortion is independent of DnaG primase activity.
Figure 6: Cooperative DnaG-DnaB interaction is dependent upon the RNA polymerase domain of primase.

Similar content being viewed by others

Change history

  • 18 June 2008

    In the version of this article initially published, Karin V. Loscha was missing from the list of authors. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Benkovic, S.J., Valentine, A.M. & Salinas, F. Replisome-mediated DNA replication. Annu. Rev. Biochem. 70, 181–208 (2001).

    Article  CAS  Google Scholar 

  2. Yuzhakov, A., Turner, J. & O'Donnell, M. Replisome assembly reveals the basis for asymmetric function in leading and lagging strand replication. Cell 86, 877–886 (1996).

    Article  CAS  Google Scholar 

  3. Wu, C.A. et al. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme. J. Biol. Chem. 267, 4064–4073 (1992).

    CAS  PubMed  Google Scholar 

  4. Kelman, Z. & O'Donnell, M. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu. Rev. Biochem. 64, 171–200 (1995).

    Article  CAS  Google Scholar 

  5. Fay, P.J., Johanson, K.O., McHenry, C.S. & Bambara, R.A. Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 256, 976–983 (1981).

    CAS  PubMed  Google Scholar 

  6. Bloom, L.B. Dynamics of loading the Escherichia coli DNA polymerase processivity clamp. Crit. Rev. Biochem. Mol. Biol. 41, 179–208 (2006).

    Article  CAS  Google Scholar 

  7. Jeruzalmi, D. et al. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106, 417–428 (2001).

    Article  CAS  Google Scholar 

  8. Tsuchihashi, Z. & Kornberg, A. Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. USA 87, 2516–2520 (1990).

    Article  CAS  Google Scholar 

  9. Kim, S., Dallmann, H.G., McHenry, C.S. & Marians, K.J. Coupling of a replicative polymerase and helicase: a τ-DnaB interaction mediates rapid replication fork movement. Cell 84, 643–650 (1996).

    Article  CAS  Google Scholar 

  10. Jergic, S. et al. The unstructured C-terminus of the τ subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the α subunit. Nucleic Acids Res. 35, 2813–2824 (2007).

    Article  CAS  Google Scholar 

  11. Jeruzalmi, D., O'Donnell, M. & Kuriyan, J. Crystal structure of the processivity clamp loader gamma (γ) complex of E. coli DNA polymerase III. Cell 106, 429–441 (2001).

    Article  CAS  Google Scholar 

  12. Glover, B.P. & McHenry, C.S. The χψ subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J. Biol. Chem. 273, 23476–23484 (1998).

    Article  CAS  Google Scholar 

  13. Yuzhakov, A., Kelman, Z. & O'Donnell, M. Trading places on DNA–a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96, 153–163 (1999).

    Article  CAS  Google Scholar 

  14. Konieczny, I. Strategies for helicase recruitment and loading in bacteria. EMBO Rep. 4, 37–41 (2003).

    Article  CAS  Google Scholar 

  15. Galletto, R., Jezewska, M.J. & Bujalowski, W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method. J. Mol. Biol. 343, 83–99 (2004).

    Article  CAS  Google Scholar 

  16. Mok, M. & Marians, K.J. The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. J. Biol. Chem. 262, 16644–16654 (1987).

    CAS  PubMed  Google Scholar 

  17. Schaeffer, P.M., Headlam, M.J. & Dixon, N.E. Protein–protein interactions in the eubacterial replisome. IUBMB Life 57, 5–12 (2005).

    Article  CAS  Google Scholar 

  18. Swart, J.R. & Griep, M.A. Primer synthesis kinetics by Escherichia coli primase on single-stranded DNA templates. Biochemistry 34, 16097–16106 (1995).

    Article  CAS  Google Scholar 

  19. Lu, Y.B., Ratnakar, P.V., Mohanty, B.K. & Bastia, D. Direct physical interaction between DnaG primase and DnaB helicase of Escherichia coli is necessary for optimal synthesis of primer RNA. Proc. Natl. Acad. Sci. USA 93, 12902–12907 (1996).

    Article  CAS  Google Scholar 

  20. Johnson, S.K., Bhattacharyya, S. & Griep, M.A. DnaB helicase stimulates primer synthesis activity on short oligonucleotide templates. Biochemistry 39, 736–744 (2000).

    Article  CAS  Google Scholar 

  21. Mitkova, A.V., Khopde, S.M. & Biswas, S.B. Mechanism and stoichiometry of interaction of DnaG primase with DnaB helicase of Escherichia coli in RNA primer synthesis. J. Biol. Chem. 278, 52253–52261 (2003).

    Article  CAS  Google Scholar 

  22. Corn, J.E., Pease, P.J., Hura, G.L. & Berger, J.M. Crosstalk between primase subunits can act to regulate primer synthesis in trans. Mol. Cell 20, 391–401 (2005).

    Article  CAS  Google Scholar 

  23. Corn, J.E. & Berger, J.M. Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Nucleic Acids Res. 34, 4082–4088 (2006).

    Article  CAS  Google Scholar 

  24. Toprak, E. & Selvin, P.R. New fluorescent tools for watching nanometer-scale conformational changes of single molecules. Annu. Rev. Biophys. Biomol. Struct. 36, 349–369 (2007).

    Article  CAS  Google Scholar 

  25. Greenleaf, W.J., Woodside, M.T. & Block, S.M. High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007).

    Article  CAS  Google Scholar 

  26. Maier, B., Bensimon, D. & Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl. Acad. Sci. USA 97, 12002–12007 (2000).

    Article  CAS  Google Scholar 

  27. Wuite, G.J., Smith, S.B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106 (2000).

    Article  CAS  Google Scholar 

  28. Bustamante, C., Bryant, Z. & Smith, S.B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    Article  Google Scholar 

  29. Lee, J.B. et al. DNA primase acts as a molecular brake in DNA replication. Nature 439, 621–624 (2006).

    Article  CAS  Google Scholar 

  30. van Oijen, A.M. Honey, I shrunk the DNA: DNA length as a probe for nucleic-acid enzyme activity. Biopolymers 85, 144–153 (2007).

    Article  CAS  Google Scholar 

  31. van Oijen, A.M. et al. Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003).

    Article  CAS  Google Scholar 

  32. Schnitzer, M.J. & Block, S.M. Statistical kinetics of processive enzymes. Cold Spring Harb. Symp. Quant. Biol. 60, 793–802 (1995).

    Article  CAS  Google Scholar 

  33. Wahle, E., Lasken, R.S. & Kornberg, A. The dnaB-dnaC replication protein complex of Escherichia coli. II. Role of the complex in mobilizing dnaB functions. J. Biol. Chem. 264, 2469–2475 (1989).

    CAS  PubMed  Google Scholar 

  34. McInerney, P., Johnson, A., Katz, F. & O'Donnell, M. Characterization of a triple DNA polymerase replisome. Mol. Cell 27, 527–538 (2007).

    Article  CAS  Google Scholar 

  35. Bustamante, C., Smith, S.B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000).

    Article  CAS  Google Scholar 

  36. Tougu, K., Peng, H. & Marians, K.J. Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. J. Biol. Chem. 269, 4675–4682 (1994).

    CAS  PubMed  Google Scholar 

  37. Oakley, A.J. et al. Crystal and solution structures of the helicase-binding domain of Escherichia coli primase. J. Biol. Chem. 280, 11495–11504 (2005).

    Article  CAS  Google Scholar 

  38. Bailey, S., Eliason, W.K. & Steitz, T.A. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318, 459–463 (2007).

    Article  CAS  Google Scholar 

  39. Lee, S.J. & Richardson, C.C. Interaction of adjacent primase domains within the hexameric gene 4 helicase-primase of bacteriophage T7. Proc. Natl. Acad. Sci. USA 99, 12703–12708 (2002).

    Article  CAS  Google Scholar 

  40. San Martin, M.C., Stamford, N.P.J., Dammerova, N., Dixon, N.E. & Carazo, J.M. A structural model for the Escherichia coli DnaB helicase based on electron microscopy data. J. Struct. Biol. 114, 167–176 (1995).

    Article  CAS  Google Scholar 

  41. Stamford, N.P.J., Lilley, P.E. & Dixon, N.E. Enriched sources of Escherichia coli replication proteins. The dnaG primase is a zinc metalloprotein. Biochim. Biophys. Acta 1132, 17–25 (1992).

    Article  CAS  Google Scholar 

  42. Wijffels, G. et al. Inhibition of protein interactions with the β2 sliding clamp of Escherichia coli DNA polymerase III by peptides from β2-binding proteins. Biochemistry 43, 5661–5671 (2004).

    Article  CAS  Google Scholar 

  43. Hamdan, S. et al. Hydrolysis of the 5′-p-nitrophenyl ester of TMP by the proofreading exonuclease (ε) subunit of Escherichia coli DNA polymerase III. Biochemistry 41, 5266–5275 (2002).

    Article  CAS  Google Scholar 

  44. Oakley, A.J. et al. Flexibility revealed by the 1.85 Å crystal structure of the β sliding-clamp subunit of Escherichia coli DNA polymerase III. Acta Crystallogr. D Biol. Crystallogr. 59, 1192–1199 (2003).

    Article  Google Scholar 

  45. Ozawa, K. et al. Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions. J. Biomol. NMR 32, 235–241 (2005).

    Article  CAS  Google Scholar 

  46. Xiao, H., Crombie, R., Dong, Z., Onrust, R. & O'Donnell, M. DNA polymerase III accessory proteins. III. holC and holD encoding χ and ψ. J. Biol. Chem. 268, 11773–11778 (1993).

    CAS  PubMed  Google Scholar 

  47. Gulbis, J.M. et al. Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur. J. Biochem. 271, 439–449 (2004).

    Article  CAS  Google Scholar 

  48. Williams, N.K. et al. In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein. J. Biol. Chem. 277, 7790–7798 (2002).

    Article  CAS  Google Scholar 

  49. Maki, S. & Kornberg, A. DNA polymerase III holoenzyme of Escherichia coli. I. Purification and distinctive functions of subunits τ and γ, the dnaZX gene products. J. Biol. Chem. 263, 6547–6554 (1988).

    CAS  PubMed  Google Scholar 

  50. Pritchard, A.E., Dallmann, H.G., Glover, B.P. & McHenry, C.S. A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of δδ′ with DnaX4 forms DnaX3δδ′. EMBO J. 19, 6536–6545 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Loparo, Harvard Medical School, Boston, for construction of a flow cell heating apparatus and critical reading of the manuscript, and A.Y. Park and M. Mulcair, Australian National University, Canberra, for preparation of several proteins. We thank S. Moskowitz, Advanced Medical Graphics, for illustrations. This work was supported in part by funding from the US National Institutes of Health and National Science Foundation (A.M.v.O.) and by a grant from the Australian Research Council (N.E.D.).

Author information

Authors and Affiliations

Authors

Contributions

N.A.T. performed single-molecule experiments, interpreted the data and wrote the manuscript; S.M.H. interpreted the data and designed experiments; S.J. and P.M.S. purified all proteins and complexes; N.E.D. designed experiments and wrote the manuscript; A.M.v.O. designed experiments, interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Antoine M van Oijen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanner, N., Hamdan, S., Jergic, S. et al. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 15, 170–176 (2008). https://doi.org/10.1038/nsmb.1381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing