Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS

Abstract

The mechanistic understanding of how membrane-embedded sensor kinases recognize signals and regulate kinase activity is currently limited. Here we report structure-function relationships of the multidomain membrane sensor kinase DcuS using solid-state NMR, structural modeling and mutagenesis. Experimental data of an individual cytoplasmic Per-Arnt-Sim (PAS) domain were compared to structural models generated in silico. These studies, together with previous NMR work on the periplasmic PAS domain, enabled structural investigations of a membrane-embedded 40-kDa construct by solid-state NMR, comprising both PAS segments and the membrane domain. Structural alterations are largely limited to protein regions close to the transmembrane segment. Data from isolated and multidomain constructs favor a disordered N-terminal helix in the cytoplasmic domain. Mutations of residues in this region strongly influence function, suggesting that protein flexibility is related to signal transduction toward the kinase domain and regulation of kinase activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the membrane-embedded E. coli C4-dicarboxylate sensor kinase DcuS comprising the PASP, TM1,2, PASC and kinase domains.
Figure 2: Experimental results obtained on isolated DcuS-PASC.
Figure 3: ssNMR results obtained on DcuS-(PASP-TM1,2-PASC).
Figure 4: Graphical illustration of the ssNMR experimental results on DcuS-(PASP-TM1,2-PASC).
Figure 5: Functional effects of mutations in the cytoplasmic PAS domain and their potential structural consequences.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Szurmant, H., White, R.A. & Hoch, J.A. Sensor complexes regulating two-component signal transduction. Curr. Opin. Struct. Biol. 17, 706–715 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mascher, T., Helmann, J.D. & Unden, G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 70, 910–938 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zientz, E., Bongaerts, J. & Unden, G. Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J. Bacteriol. 180, 5421–5425 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Golby, P., Davies, S., Kelly, D.J., Guest, J.R. & Andrews, S.C. Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. J. Bacteriol. 181, 1238–1248 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Janausch, I.G., Garcia-Moreno, I. & Unden, G. Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J. Biol. Chem. 277, 39809–39814 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Bader, M.W. et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122, 461–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Neiditch, M.B. et al. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126, 1095–1108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rossmann, M.G., Morais, M.C., Leiman, P.G. & Zhang, W. Combining X-ray crystallography and electron microscopy. Structure 13, 355–362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Pickford, A.R. & Campbell, I.D. NMR studies of modular protein structures and their interactions. Chem. Rev. 104, 3557–3566 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Topf, M. & Sali, A. Combining electron microscopy and comparative protein structure modeling. Curr. Opin. Struct. Biol. 15, 578–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Qian, B. et al. High-resolution structure prediction and the crystallographic phase problem. Nature 450, 259–264 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meiler, J. & Baker, D. Rapid protein fold determination using unassigned NMR data. Proc. Natl. Acad. Sci. USA 100, 15404–15409 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cavalli, A., Salvatella, X., Dobson, C.M. & Vendruscolo, M. Protein structure determination from NMR chemical shifts. Proc. Natl. Acad. Sci. USA 104, 9615–9620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schueler-Furman, O., Wang, C., Bradley, P., Misura, K. & Baker, D. Progress in modeling of protein structures and interactions. Science 310, 638–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature 422, 216–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, A.G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Cierpicki, T., Bushweller, J.H. & Derewenda, Z.S. Probing the supramodular architecture of a multidomain protein: the structure of syntenin in solution. Structure 13, 319–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Thompson, L.K. Solid-state NMR studies of the structure and mechanisms of proteins. Curr. Opin. Struct. Biol. 12, 661–669 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Patel, A.B. et al. Coupling of retinal isomerization to the activation of rhodopsin. Proc. Natl. Acad. Sci. USA 101, 10048–10053 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, D.E., Chivian, D. & Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32, W526–W531 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pappalardo, L. et al. The NMR structure of the sensory domain of the membranous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli. J. Biol. Chem. 278, 39185–39188 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Etzkorn, M., Böckmann, A., Penin, F., Riedel, D. & Baldus, M. Characterization of folding intermediates of a domain-swapped protein by solid-state NMR spectroscopy. J. Am. Chem. Soc. 129, 169–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Vuister, G.W., Kim, S.J., Wu, C. & Bax, A. 2D and 3D NMR-study of phenylalanine residues in proteins by reverse isotopic labeling. J. Am. Chem. Soc. 116, 9206–9210 (1994).

    Article  CAS  Google Scholar 

  25. Heise, H. et al. Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR. Proc. Natl. Acad. Sci. USA 102, 15871–15876 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baldus, M. Molecular interactions investigated by multi-dimensional solid-state NMR. Curr. Opin. Struct. Biol. 16, 618–623 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Watts, K.J., Johnson, M.S. & Taylor, B.L. Minimal requirements for oxygen sensing by the aerotaxis receptor Aer. Mol. Microbiol. 59, 1317–1326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taylor, B.L. & Zhulin, I.B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. & Jardetzky, O. Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci. 11, 852–861 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wishart, D.S. & Sykes, B.D. Chemical-shifts as a tool for structure determination. Methods Enzymol. 239, 363–392 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Neal, S., Nip, A.M., Zhang, H. & Wishart, D.S. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J. Biomol. NMR 26, 215–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Lange, A. et al. A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew. Chem. Int. Edn. Engl. 44, 2089–2092 (2005).

    Article  CAS  Google Scholar 

  34. Vreede, J., van der Horst, M.A., Hellingwerf, K.J., Crielaard, W. & van Aalten, D.M.F. PAS domains. Common structure and common flexibility. J. Biol. Chem. 278, 18434–18439 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Pandini, A. & Bonati, L. Conservation and specialization in PAS domain dynamics. Protein Eng. Des. Sel. 18, 127–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Lange, A., Luca, S. & Baldus, M. Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J. Am. Chem. Soc. 124, 9704–9705 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Seidel, K., Etzkorn, M., Heise, H., Becker, S. & Baldus, M. High-resolution solid-state NMR studies on uniformly [13C,15N]-labeled ubiquitin. ChemBioChem 6, 1638–1647 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Sevvana, M. et al. A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA. J. Mol. Biol. 377, 512–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Kneuper, H. et al. The nature of the stimulus and of the fumarate binding site of the fumarate sensor DcuS of Escherichia coli. J. Biol. Chem. 280, 20596–20603 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Key, J., Hefti, M., Purcell, E.B. & Moffat, K. Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: signaling, dimerization, and mechanism. Biochemistry 46, 3614–3623 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Repik, A. et al. PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol. Microbiol. 36, 806–816 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Six, S., Andrews, S.C., Unden, G. & Guest, J.R. Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J. Bacteriol. 176, 6470–6478 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Janausch, I.G., Zientz, E., Tran, Q.H., Kröger, A. & Unden, G. C4-dicarboxylate carriers and sensors in bacteria. Biochim. Biophys. Acta 1553, 39–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Marina, A., Waldburger, C.D. & Hendrickson, W.A. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO J. 24, 4247–4259 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zoltowski, B.D. et al. Conformational switching in the fungal light sensor Vivid. Science 316, 1054–1057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harper, S.M., Neil, L.C. & Gardner, K.H. Structural basis of a phototropin light switch. Science 301, 1541–1544 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Watts, K.J., Sommer, K., Fry, S.L., Johnson, M.S. & Taylor, B.L. Function of the N-terminal cap of the PAS domain in signaling by the aerotaxis receptor Aer. J. Bacteriol. 188, 2154–2162 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma, X., Sayed, N., Baskaran, P., Beuve, A. & van den Akker, F. PAS-mediated dimerization of soluble guanylyl cyclase revealed by signal transduction histidine kinase domain crystal structure. J. Biol. Chem. 283, 1167–1178 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, J. et al. Changes at the KinA PAS-A dimerization interface influence histidine kinase function. Biochemistry 47, 4051–4064 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Abo-Amer, A.E. et al. DNA interaction and phosphotransfer of the C4-dicarboxylate-responsive DcuS-DcuR two-component regulatory system from Escherichia coli. J. Bacteriol. 186, 1879–1889 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin, R.W. & Zilm, K.W. Preparation of protein nanocrystals and their characterization by solid state NMR. J. Magn. Reson. 165, 162–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Miroux, B. & Walker, J.E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, J.H. A Short Course In Bacterial Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1992).

    Google Scholar 

  54. Rigaud, J.L., Pitard, B. & Levy, D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim. Biophys. Acta 1231, 223–246 (1995).

    Article  PubMed  Google Scholar 

  55. Fung, B.M., Khitrin, A.K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Stein, E.G., Rice, L.M. & Brunger, A.T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Linge, J.P., Williams, M.A., Spronk, C.A.E.M., Bonvin, A.M.J.J. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins Struct. Funct. Genet. 50, 496–506 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Technical assistance by B. Angerstein, K. Sabagh and A.-K. Brückner is gratefully acknowledged. This work was funded by the DFG (BA 1700/6-2; UN 49/6 and UN49/8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Griesinger, Gottfried Unden or Marc Baldus.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2 and Supplementary Methods. (PDF 1275 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etzkorn, M., Kneuper, H., Dünnwald, P. et al. Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS. Nat Struct Mol Biol 15, 1031–1039 (2008). https://doi.org/10.1038/nsmb.1493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing