Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

tRNA–mRNA mimicry drives translation initiation from a viral IRES

Abstract

Internal ribosome entry site (IRES) RNAs initiate protein synthesis in eukaryotic cells by a noncanonical cap-independent mechanism. IRESes are critical for many pathogenic viruses, but efforts to understand their function are complicated by the diversity of IRES sequences as well as by limited high-resolution structural information. The intergenic region (IGR) IRESes of the Dicistroviridae viruses are powerful model systems to begin to understand IRES function. Here we present the crystal structure of a Dicistroviridae IGR IRES domain that interacts with the ribosome's decoding groove. We find that this RNA domain precisely mimics the transfer RNA anticodon–messenger RNA codon interaction, and its modeled orientation on the ribosome helps explain translocation without peptide bond formation. When combined with a previous structure, this work completes the first high-resolution description of an IRES RNA and provides insight into how RNAs can manipulate complex biological machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The P site domain of the Dicistroviridae intergenic region IRESes.
Figure 2: Structural details and comparison to authentic tRNA-mRNA interactions.
Figure 3: Translation initiation assays for mutant CrPV IGR IRES RNAs.
Figure 4: Model and probing of domain 3 in the ribosome P site.
Figure 5: Docking of both IRES domain structures into a cryo-EM reconstruction and hypothesized mimicry mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hershey, J.W.B. & Merrick, W.C. Pathway and mechanism of initiation of protein synthesis. In Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 33–88 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000).

    Google Scholar 

  2. Stoneley, M. & Willis, A.E. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200–3207 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Jackson, R.J. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem. Soc. Trans. 33, 1231–1241 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Schuler, M. et al. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat. Struct. Mol. Biol. 13, 1092–1096 (2006).

    Article  PubMed  Google Scholar 

  5. Spahn, C.M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes; the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Fukushi, S. et al. Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J. Biol. Chem. 276, 20824–20826 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J.D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13, 1695–1706 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Spahn, C.M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1959–1962 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Jan, E. Divergent IRES elements in invertebrates. Virus Res. 119, 16–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Pfingsten, J.S., Costantino, D.A. & Kieft, J.S. Conservation and diversity among the three-dimensional folds of the Dicistroviridae intergenic region IRESes. J. Mol. Biol. 370, 856–869 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Costantino, D. & Kieft, J.S. A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA 11, 332–343 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nishiyama, T. et al. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res. 31, 2434–2442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jan, E. & Sarnow, P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J. Mol. Biol. 324, 889–902 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Kanamori, Y. & Nakashima, N. A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA 7, 266–274 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Pestova, T.V. & Hellen, C.U. Translation elongation after assembly of ribosomes on the cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev. 17, 181–186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sasaki, J. & Nakashima, N. Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. Proc. Natl. Acad. Sci. USA 97, 1512–1515 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sasaki, J. & Nakashima, N. Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. J. Virol. 73, 1219–1226 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jan, E. et al. Initiator Met-tRNA-independent translation mediated by an internal ribosome entry site element in cricket paralysis virus-like insect viruses. Cold Spring Harb. Symp. Quant. Biol. 66, 285–292 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Thompson, S.R., Gulyas, K.D. & Sarnow, P. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc. Natl. Acad. Sci. USA 98, 12972–12977 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilson, J.E., Powell, M.J., Hoover, S.E. & Sarnow, P. Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol. Cell. Biol. 20, 4990–4999 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jan, E., Kinzy, T.G. & Sarnow, P. Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis. Proc. Natl. Acad. Sci. USA 100, 15410–15415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pfingsten, J.S., Costantino, D.A. & Kieft, J.S. Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science 314, 1450–1454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keel, A.Y., Rambo, R.P., Batey, R.T. & Kieft, J.S. A general strategy to solve the phase problem in RNA crystallography. Structure 15, 761–772 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hilbers, C.W., Michiels, P.J. & Heus, H.A. New developments in structure determination of pseudoknots. Biopolymers 48, 137–153 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Cabello-Villegas, J., Tworowska, I. & Nikonowicz, E.P. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe. Biochemistry 43, 55–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Honda, M., Brown, E.A. & Lemon, S.M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955–968 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Merino, E.J., Wilkinson, K.A., Coughlan, J.L. & Weeks, K.M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Wilkinson, K.A., Merino, E.J. & Weeks, K.M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc. 1, 1610–1616 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. McGarry, K.G., Walker, S.E., Wang, H. & Fredrick, K. Destabilization of the P site codon-anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome. Mol. Cell 20, 613–622 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Bretscher, M.S. Translocation in protein synthesis: a hybrid structure model. Nature 218, 675–677 (1968).

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto, H., Nakashima, N., Ikeda, Y. & Uchiumi, T. Binding mode of the first aminoacyl-tRNA in translation initiation mediated by Plautia stali intestine virus internal ribosome entry site. J. Biol. Chem. 282, 7770–7776 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Allen, G.S., Zavialov, A., Gursky, R., Ehrenberg, M. & Frank, J. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121, 703–712 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Dorner, S., Brunelle, J.L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat. Struct. Mol. Biol. 13, 234–241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Olejniczak, M., Dale, T., Fahlman, R.P. & Uhlenbeck, O.C. Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding. Nat. Struct. Mol. Biol. 12, 788–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Noller, H.F., Hoang, L. & Fredrick, K. The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett. 579, 855–858 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Spahn, C.M. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae–tRNA-ribosome and subunit-subunit interactions. Cell 107, 373–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Berk, V., Zhang, W., Pai, R.D. & Cate, J.H. Structural basis for mRNA and tRNA positioning on the ribosome. Proc. Natl. Acad. Sci. USA 103, 15830–15834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Sharma, D., Southworth, D.R. & Green, R. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. RNA 10, 102–113 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kristensen, O., Laurberg, M., Liljas, A. & Selmer, M. Is tRNA binding or tRNA mimicry mandatory for translation factors? Curr. Protein Pept. Sci. 3, 133–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Fechter, P., Rudinger-Thirion, J., Florentz, C. & Giege, R. Novel features in the tRNA-like world of plant viral RNAs. Cell. Mol. Life Sci. 58, 1547–1561 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Moore, S.D. & Sauer, R.T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Bessho, Y. et al. Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA. Proc. Natl. Acad. Sci. USA 104, 8293–8298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  51. Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Holton, J. & Alber, T. Automated protein crystal structure determination using ELVES. Proc. Natl. Acad. Sci. USA 101, 1537–1542 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newslett. Protein Crystallogr No. 26 (1992).

  54. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  55. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A Foundations Crystallogr. 47, 110–119 (1991).

    Article  Google Scholar 

  57. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Kieft, J.S., Zhou, K., Jubin, R. & Doudna, J.A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11, 344–354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Bjornsen for obtaining initial crystals and for technical assistance, Q. Vicens, T. Evans, R. Batey, B. Hodges, T. Blumenthal, E. Eisenmesser, R. Zhao, M. Filbin and A. Keel for critically reading this manuscript, R. Batey for useful discussions and for providing the iridium(III) hexammine, P. Sarnow (Stanford University), E. Jan (University of British Columbia) and N. Nakashima (Japanese National Institute of Agrobiological Sciences) for plasmids, and the staffs of beam lines 4.2.2 and 12.3.1 at the Advanced Light Source. This work was supported by grants AI072187 and GM072560 from the US National Institutes of Health (J.S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S Kieft.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1, Supplementary Methods (PDF 631 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costantino, D., Pfingsten, J., Rambo, R. et al. tRNA–mRNA mimicry drives translation initiation from a viral IRES. Nat Struct Mol Biol 15, 57–64 (2008). https://doi.org/10.1038/nsmb1351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing