Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pot1 and cell cycle progression cooperate in telomere length regulation

Abstract

Removal of the vertebrate telomere protein Pot1 results in a DNA damage response and cell cycle arrest. Here we show that loss of chicken Pot1 causes Chk1 activation, and inhibition of Chk1 signaling prevents the cell cycle arrest. However, arrest still occurs after disruption of ATM, which encodes another DNA damage response protein. These results indicate that Pot1 is required to prevent a telomere checkpoint mediated by another such protein, ATR, that is most likely triggered by the G-overhang. We also show that removal of Pot1 causes exceptionally rapid telomere growth upon arrest in late S/G2 of the cell cycle. However, release of the arrest slows both telomere growth and G-overhang elongation. Thus, Pot1 seems to regulate telomere length and G-overhang processing both through direct interaction with the telomere and by preventing a late S/G2 delay in the cell cycle. Our results reveal that cell cycle progression is an important component of telomere length regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of Chk1 signaling after Pot1 removal.
Figure 2: ATM is dispensable for checkpoint activation in response to Pot1 loss.
Figure 3: Increase in telomere length and G-overhang signal in Er-Pot1 cells.
Figure 4: Inhibition of the late S/G2 checkpoint reduces the rate of telomere and G-overhang elongation.

Similar content being viewed by others

References

  1. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Riha, K., Heacock, M.L. & Shippen, D.E. The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Annu. Rev. Genet. 40, 237–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. O'Connor, M.S., Safari, A., Xin, H., Liu, D. & Songyang, Z. A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc. Natl. Acad. Sci. USA 103, 11874–11879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, F. et al. The POT–TTP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Larrivee, M., LeBel, C. & Wellinger, R.J. The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev. 18, 1391–1396 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tseng, S.F., Lin, J.J. & Teng, S.C. The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Res. 34, 6327–6336 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, Y., Xiao, S. & Zhu, X-D. MRE11/RAD50/NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat. Struct. Mol. Biol. 14, 832–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Verdun, R.E. & Karlseder, J. Replication and protection of telomeres. Nature 447, 924–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Hector, R.E. et al. Tel1p preferentially associates with short telomeres to stimulate their elongation. Mol. Cell 27, 851–858 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Verdun, R.E., Crabbe, L., Haggblom, C. & Karlseder, J. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol. Cell 20, 551–561 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Verdun, R.E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Herbig, U., Jobling, W.A., Chen, B.P., Chen, D.J. & Sedivy, J.M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 14, 501–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Celli, G.B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Baumann, P. & Cech, T.R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Hockemeyer, D., Daniels, J.P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: two distinct Pot1 proteins protect mouse telomeres. Cell 126, 63–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Churikov, D., Wei, C. & Price, C.M. Vertebrate Pot1 restricts G-overhang length and prevents activation of a telomeric DNA damage checkpoint but is dispensable for overhang protection. Mol. Cell. Biol. 26, 6971–6982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Zou, L. Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes Dev. 21, 879–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Sarkaria, J.N. et al. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 58, 4375–4382 (1998).

    CAS  PubMed  Google Scholar 

  21. Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Kohn, E.A., Yoo, C.J. & Eastman, A. The protein kinase C inhibitor Go6976 is a potent inhibitor of DNA damage-induced S and G2 cell cycle checkpoints. Cancer Res. 63, 31–35 (2003).

    CAS  PubMed  Google Scholar 

  23. Zachos, G., Rainey, M.D. & Gillespie, D.A. Chk1-dependent S-M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol. Cell. Biol. 25, 563–574 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gaestel, M. MAPKAP kinases—MKs—two's company, three's a crowd. Nat. Rev. Mol. Cell Biol. 7, 120–130 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Reinhardt, H.C., Aslanian, A.S., Lees, J.A. & Yaffe, M.B. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11, 175–189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jazayeri, A. et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Takao, N. et al. Disruption of ATM in p53-null cells causes multiple functional abnormalities in cellular response to ionizing radiation. Oncogene 18, 7002–7009 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Dodson, H. et al. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J. 23, 3864–3873 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, Y.S. & Chk, Y. 1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair (Amst.) 3, 1025–1032 (2004).

    Article  CAS  Google Scholar 

  30. Wei, C., Skopp, R., Takata, M., Takeda, S. & Price, C.M. Effects of double-strand break repair proteins on vertebrate telomere structure. Nucleic Acids Res. 30, 2862–2870 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, S.H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nat. Genet. 23, 405–412 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, S. & de Lange, T. Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10, 1299–1302 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Li, B. & De Lange, T. Rap1 affects the length and heterogeneity of human telomeres. Mol. Biol. Cell 14, 5060–5068 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, J.Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Jacob, N.K., Lescasse, R., Linger, B.R. & Price, C.M. Tetrahymena Pot1a regulates telomere length and prevents activation of a cell cycle checkpoint. Mol Cell Biol 27, 1592–1601 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Leung-Pineda, V., Ryan, C.E. & Piwnica-Worms, H. Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol. Cell. Biol. 26, 7529–7538 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lei, M., Zaug, A.J., Podell, E.R. & Cech, T.R. Switching human telomerase on and off with hPOT1 protein in vitro. J. Biol. Chem. 280, 20449–20456 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kelleher, C., Kurth, I. & Lingner, J. Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol. Cell. Biol. 25, 808–818 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hockemeyer, D., Sfeir, A.J., Shay, J.W., Wright, W.E. & de Lange, T. POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J. 24, 2667–2678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Denchi, E.L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Wei, C. & Price, C.M. Cell cycle localization, dimerization, and binding domain architecture of the telomere protein cPot1. Mol. Cell. Biol. 24, 2091–2102 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Majka, J.N. & Burgers, P.M. Clamping the Mec1/ATR checkpoint kinase into action. Cell Cycle 6, 1157–1160 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Karlseder, J. et al. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol. 2, E240 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smogorzewska, A. & de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Xin, H. et al. TPP1 is a homolog of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Frank, C.J., Hyde, M. & Greider, C.W. Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol. Cell 24, 423–432 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Vodenicharov, M.D. & Wellinger, R.J. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Mol. Cell 24, 127–137 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Morrison (National University of Ireland) for helpful comments and for providing the ATM gene targeting constructs, D. Gillespie (Beatson Institute for Cancer Research) for the chicken Chk2 antibody and Y. Sanchez (Dartmouth Medical School) for helpful discussions. This work was supported by US National Institutes of Health grant GM041803 to C.M.P.

Author information

Authors and Affiliations

Authors

Contributions

D.C. and C.M.P. designed the research; D.C. performed the experiments; C.M.P. wrote the article.

Corresponding author

Correspondence to Carolyn M Price.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churikov, D., Price, C. Pot1 and cell cycle progression cooperate in telomere length regulation. Nat Struct Mol Biol 15, 79–84 (2008). https://doi.org/10.1038/nsmb1331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing