Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for aminoglycoside inhibition of bacterial ribosome recycling

Abstract

Aminoglycosides are widely used antibiotics that cause messenger RNA decoding errors, block mRNA and transfer RNA translocation, and inhibit ribosome recycling. Ribosome recycling follows the termination of protein synthesis and is aided by ribosome recycling factor (RRF) in bacteria. The molecular mechanism by which aminoglycosides inhibit ribosome recycling is unknown. Here we show in X-ray crystal structures of the Escherichia coli 70S ribosome that RRF binding causes RNA helix H69 of the large ribosomal subunit, which is crucial for subunit association, to swing away from the subunit interface. Aminoglycosides bind to H69 and completely restore the contacts between ribosomal subunits that are disrupted by RRF. These results provide a structural explanation for aminoglycoside inhibition of ribosome recycling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of aminoglycosides with h44 and H69 of the ribosome.
Figure 2: Interactions of aminoglycosides with H69 of the ribosome.
Figure 3: Structural effects of RRF binding to ribosome I.
Figure 4: Structural effect of RRF on H69 is inhibited by aminoglycosides.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Magnet, S. & Blanchard, J.S. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–498 (2005).

    Article  CAS  Google Scholar 

  2. Sutcliffe, J.A. Improving on nature: antibiotics that target the ribosome. Curr. Opin. Microbiol. 8, 534–542 (2005).

    Article  CAS  Google Scholar 

  3. Davies, J., Gorini, L. & Davies, B.D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol. Pharmacol. 1, 93–106 (1965).

    CAS  Google Scholar 

  4. Davies, J., Jones, D.S. & Khorana, H.G. A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J. Mol. Biol. 18, 48–57 (1966).

    Article  CAS  Google Scholar 

  5. Cabañas, M.J., Vázquez, D. & Modolell, J. Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem. Biophys. Res. Commun. 83, 991–997 (1978).

    Article  Google Scholar 

  6. Misumi, M., Nishimura, T., Komai, T. & Tanaka, N. Interaction of kanamycin and related antibiotics with the large subunit of ribosomes and the inhibition of translocation. Biochem. Biophys. Res. Commun. 84, 358–365 (1978).

    Article  CAS  Google Scholar 

  7. Hirokawa, G. et al. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J. 21, 2272–2281 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, D.N. & Nierhaus, K.H. The how and Y of cold shock. Nat. Struct. Mol. Biol. 11, 1026–1028 (2004).

    Article  CAS  Google Scholar 

  9. Janosi, L. et al. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 17, 1141–1151 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Zavialov, A.V., Hauryliuk, V.V. & Ehrenberg, M. Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol. Cell 18, 675–686 (2005).

    Article  CAS  Google Scholar 

  11. Gao, N. et al. Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol. Cell 18, 663–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Peske, F., Rodnina, M.V. & Wintermeyer, W. Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol. Cell 18, 403–412 (2005).

    Article  CAS  Google Scholar 

  13. Hirokawa, G., Demeshkina, N., Iwakura, N., Kaji, H. & Kaji, A. The ribosome-recycling step: consensus or controversy? Trends Biochem. Sci. 31, 143–149 (2006).

    Article  CAS  Google Scholar 

  14. Hirokawa, G. et al. The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. RNA 11, 1317–1328 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Teyssier, E. et al. Temperature-sensitive mutation in yeast mitochondrial ribosome-recycling factor (RRF). Nucleic Acids Res. 31, 4218–4226 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Rolland, N. et al. Plant ribosome recycling factor homologue is a chloroplastic protein and is bactericidal in Escherichia coli carrying temperature-sensitive ribosome recycling factor. Proc. Natl. Acad. Sci. USA 96, 5464–5469 (1999).

    Article  CAS  Google Scholar 

  17. Janosi, L., Shimizu, I. & Kaji, A. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc. Natl. Acad. Sci. USA 91, 4249–4253 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Campuzano, S., Vázquez, D. & Modolell, J. Functional interaction of neomycin B and related antibiotics with 30S and 50S ribosomal subunits. Biochem. Biophys. Res. Commun. 87, 960–966 (1979).

    Article  CAS  Google Scholar 

  19. Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  Google Scholar 

  20. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  21. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005).

    Article  CAS  Google Scholar 

  22. Moazed, D. & Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394 (1987).

    Article  CAS  Google Scholar 

  23. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  24. Cannone, J.J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002).

    Article  PubMed  Google Scholar 

  25. Lancaster, L., Kiel, M.C., Kaji, A. & Noller, H.F. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 111, 129–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  27. Agrawal, R.K. et al. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc. Natl. Acad. Sci. USA 101, 8900–8905 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Connell, S.R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007).

    Article  CAS  Google Scholar 

  29. Raj, V.S., Kaji, H. & Kaji, A. Interaction of RRF and EF-G from E. coli and T. thermophilus with ribosomes from both origins—insight into the mechanism of the ribosome recycling step. RNA 11, 275–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Wilson, D.N. et al. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24, 251–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Ali, I.K., Lancaster, L., Feinberg, J., Joseph, S. & Noller, H.F. Deletion of a conserved, central ribosomal intersubunit RNA bridge. Mol. Cell 23, 865–874 (2006).

    Article  CAS  Google Scholar 

  32. Liiv, A., Karitkina, D., Maiväli, U. & Remme, J. Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis. BMC Mol. Biol. 6, 18 (2005).

    Article  PubMed  Google Scholar 

  33. Rackham, O., Wang, K. & Chin, J.W. Functional epitopes at the ribosome subunit interface. Nat. Chem. Biol. 2, 254–258 (2006).

    Article  CAS  Google Scholar 

  34. Frank, J. & Agrawal, R.K. A ratchet-like intersubunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  35. Horan, L.H. & Noller, H.F. Intersubunit movement is required for ribosomal translocation. Proc. Natl. Acad. Sci. USA 104, 4881–4885 (2007).

    Article  CAS  Google Scholar 

  36. Campuzano, S., Vázquez, D. & Modolell, J. Dissociation of guanosine nucleotide-elongation factor G-ribosome complexes. Biochemistry 18, 1570–1574 (1979).

    Article  CAS  Google Scholar 

  37. Senior, K. Duchenne muscular dystrophy improved by gentamicin. Mol. Med. Today 5, 461 (1999).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  40. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  41. Yoshizawa, S., Fourmy, D. & Puglisi, J.D. Structural origins of gentamicin antibiotic action. EMBO J. 17, 6437–6448 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Cowtan, K. General quadratic functions in real and reciprocal space and their application to likelihood phasing. Acta Crystallogr. D Biol. Crystallogr. 56, 1612–1621 (2000).

    Article  CAS  Google Scholar 

  43. Kleywegt, G.J. & Jones, T.A. Databases in protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 54, 1119–1131 (1998).

    Article  CAS  Google Scholar 

  44. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  45. Toyoda, T. et al. Crystal structure combined with genetic analysis of the Thermus thermophilus ribosome recycling factor shows that a flexible hinge may act as a functional switch. RNA 6, 1432–1444 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Carson, M. Ribbons. Methods Enzymol. 277, 493–502 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Frankel, S. Classen and G. Meigs for help with data measurement at the SIBYLS and 8.3.1 beamlines at the Advanced Light Source; K. Rajashankar, I. Kourinov and N. Sukumar for help with data measurement at Northeastern Collaborative Access Team beamline 24-IDC at the Advanced Photon Source; W. Wintermeyer, M. O'Connor and K. Fredrick for helpful discussions; A. Borovinskiy for help with figure preparation and overall support; and J. Doudna, H. Noller, P. Gunda and J. Dunkle for helpful comments on the manuscript. This work was supported by US National Institutes of Health (NIH) grants GM65050 (J.H.D.C.) and GM60429 (A.K.), the Nippon Paint Fund (H.K.), NIH National Cancer Institute grant CA92584 (for the SIBYLS and 8.3.1 beamlines), NIH National Center for Research Resources grant RR-15301 (for beamline 24-IDC) and US Department of Energy grants DE-AC03-76SF00098, KP110201, and LBNL LDRD 366851 (J.H.D.C.), DE-AC03 76SF00098 (for the SIBYLS and 8.3.1 beamlines) and DE-AC02-06CH11357 (for the Advanced Photon Source).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie H Doudna Cate.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Methods and Supplementary Data (PDF 7354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovinskaya, M., Pai, R., Zhang, W. et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 14, 727–732 (2007). https://doi.org/10.1038/nsmb1271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing