Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The multifunctional human p100 protein 'hooks' methylated ligands

Abstract

The human p100 protein is a vital transcription regulator that increases gene transcription by forming a physical bridge between promoter-specific activators and the basal transcription machinery. Here we demonstrate that the tudor and SN (TSN) domain of p100 interacts with U small nuclear ribonucleoprotein (snRNP) complexes, suggesting a role for p100 in the processing of precursor messenger RNA. We determined the crystal structure of the p100 TSN domain to delineate the molecular basis of p100's proposed functions. The interdigitated structure resembles a hook, with a hinge controlling the movement and orientation of the hook. Our studies suggest that a conserved aromatic cage hooks methyl groups of snRNPs and anchors p100 to the spliceosome. These structural insights partly explain the distinct roles of p100 in transcription and splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the p100 TSN domain.
Figure 2: Analysis of the p100 TSN region.
Figure 3: Human p100 binds methylated ligands.
Figure 4: TSN domain of p100 interacts with the U snRNP complex.
Figure 5: Structure of full-length p100.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Yang, J. et al. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J. 21, 4950–4958 (2002).

    Article  CAS  Google Scholar 

  2. Valineva, T., Yang, J., Palovuori, R. & Silvennoinen, O. The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. J. Biol. Chem. 280, 14989–14996 (2005).

    Article  Google Scholar 

  3. Leverson, J.D. et al. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol. Cell 2, 417–425 (1998).

    Article  CAS  Google Scholar 

  4. Valineva, T., Yang, J. & Silvennoinen, O. Characterization of RNA helicase A as component of STAT6-dependent enhanceosome. Nucleic Acids Res. 34, 3938–3946 (2006).

    Article  Google Scholar 

  5. Tong, X., Drapkin, R., Yalamanchili, R., Mosialos, G. & Kieff, E. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol. Cell. Biol. 15, 4735–4744 (1995).

    Article  CAS  Google Scholar 

  6. Paukku, K., Yang, J. & Silvennoinen, O. TSN and nuclease-like domains containing protein p100 function as coactivators for signal transducer and activator of transcription 5. Mol. Endocrinol. 17, 1805–1814 (2003).

    Article  CAS  Google Scholar 

  7. Low, S.H. et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev. Cell 10, 57–69 (2006).

    Article  CAS  Google Scholar 

  8. Caudy, A.A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414 (2003).

    Article  CAS  Google Scholar 

  9. Callebaut, I. & Mornon, J.P. The human EBNA-2 coactivator p100: multidomain organization and relationship to the staphylococcal nuclease fold and to the TSN protein involved in Drosophila melanogaster development. Biochem. J. 321, 125–132 (1997).

    Article  CAS  Google Scholar 

  10. Ponting, C.P. P100, a transcriptional coactivator, is a human homologue of staphylococcal nuclease. Protein Sci. 6, 459–463 (1997).

    Article  CAS  Google Scholar 

  11. Selenko, P. et al. SMN tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol. 8, 27–31 (2001).

    Article  CAS  Google Scholar 

  12. Sprangers, R., Groves, M.R., Sinning, I. & Sattler, M. High-resolution X-ray and NMR structures of the SMN TSN domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol. 327, 507–520 (2003).

    Article  CAS  Google Scholar 

  13. Murzin, A.G. OB (oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12, 861–867 (1993).

    Article  CAS  Google Scholar 

  14. Hynes, T.R. & Fox, R.O. The crystal structure of Staphylococcal nuclease refined at 1.7 Å resolution. Proteins Struct. Funct. Genet. 10, 92–105 (1991).

    Article  CAS  Google Scholar 

  15. Combet, C., Jambon, M., Deleage, G. & Geourjon, C. Geno3D: automatic comparative molecular modeling of protein. Bioinformatics 18, 213–214 (2002).

    Article  CAS  Google Scholar 

  16. Eissenberg, J.C. & Elgin, C.R. Antagonizing the neighbours. Nature 438, 1090–1091 (2005).

    Article  CAS  Google Scholar 

  17. Brahms, H., Meheus, L., Brabandere, V., Fischer, U. & Luhrmann, R. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B0 and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 1531–1542 (2001).

    Article  CAS  Google Scholar 

  18. Friesen, W.J., Massenet, S., Paushkin, S., Wyce, A. & Dreyfuss, G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell 7, 1111–1117 (2001).

    Article  CAS  Google Scholar 

  19. Nielsen, P.R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107 (2002).

    Article  CAS  Google Scholar 

  20. Jacobs, S.A. & Khorasanizadeh, S. Structure of the HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002).

    Article  CAS  Google Scholar 

  21. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R-M. Recognition of histone H3 lysine-4 methylation by the double TSN domain of JMJD2A. Science 312, 748–751 (2006).

    Article  CAS  Google Scholar 

  22. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  CAS  Google Scholar 

  23. Min, J., Zhang, Y. & Xu, R.M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  Google Scholar 

  24. Botuyan, M.V. et al. Structural basis for the methylation state-specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  Google Scholar 

  25. Kiss, T. Biogenesis of small nuclear RNPs. J. Cell Sci. 117, 5949–5951 (2004).

    Article  CAS  Google Scholar 

  26. Reed, R. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 15, 326–331 (2003).

    Article  CAS  Google Scholar 

  27. Rayment, I. Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods Enzymol. 276, 171–179 (1997).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  30. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  31. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  32. McRee, D.E. XtalView/Xfit — a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  33. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004).

    Article  CAS  Google Scholar 

  34. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  35. Berman, H.M. et al. The Protein Data Bank and the challenge of structural genomics. Nat. Struct. Biol. 7, 957–959 (2000).

    Article  CAS  Google Scholar 

  36. Frilander, M.J. & Steitz, J.A. Initial recognition of U12-dependent introns requires both U11/5′ splice-site and U12/branchpoint interactions. Genes Dev. 13, 851–863 (1999).

    Article  CAS  Google Scholar 

  37. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the 863 (grant 2006AA02A316) and 973 (grant 2006CB910901) projects of the Ministry of Science and Technology of China, the National Natural Science Foundation of China (grants 30670427, 30670441 and 30300070), the US National Institutes of Health (grant 1P50 GM62407), the University of Georgia Research Foundation, the Georgia Research Alliance, Program for New Century Excellent Talents in University (grant NCET-04-0245), Tianjin Municipal Science and Technology Commission (grant 07JCZDJC07300) and the Institute of Biophysics, Chinese Academy of Sciences. Supporting institutions for the SER-CAT 22-ID beamline at the Advanced Photon Source may be found at http://www.ser-cat.org/members.html. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

N.S., M.Z., C.C. and H.X. contributed to the structural studies. J.Y., J.S., Y.D. and O.S. contributed to the mutagenesis and functional characterization of the p100 TSN domain. Z.J.-L., Y.L. and Z.Y. contributed to data collection and analysis. Z.-J.L., J.Y., Z. R. and B.-C.W. conceived the study and participated in its design and coordination. N.S., Z.-J.L., O.S. and J.Y. drafted the manuscript.

Corresponding authors

Correspondence to Jie Yang or Zhi-Jie Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 2030 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, N., Zhao, M., Cheng, C. et al. The multifunctional human p100 protein 'hooks' methylated ligands. Nat Struct Mol Biol 14, 779–784 (2007). https://doi.org/10.1038/nsmb1269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing