Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for nick recognition by a minimal pluripotent DNA ligase

Abstract

Chlorella virus DNA ligase, the smallest eukaryotic ligase known, has pluripotent biological activity and an intrinsic nick-sensing function, despite having none of the accessory domains found in cellular ligases. A 2.3-Å crystal structure of the Chlorella virus ligase-AMP intermediate bound to duplex DNA containing a 3′-OH–5′-PO4 nick reveals a new mode of DNA envelopment, in which a short surface loop emanating from the OB domain forms a β-hairpin 'latch' that inserts into the DNA major groove flanking the nick. A network of interactions with the 3′-OH and 5′-PO4 termini in the active site illuminates the DNA adenylylation mechanism and the crucial roles of AMP in nick sensing and catalysis. Addition of a divalent cation triggered nick sealing in crystallo, establishing that the nick complex is a bona fide intermediate in the DNA repair pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the Chlorella virus ligase and human LIG1 DNA clamps.
Figure 2: Protein domain movements and nucleation of the latch module accompany nick recognition and clamp closure.
Figure 3: Deleting the latch module suppresses nick recognition and sealing.
Figure 4: DNA interface of the OB and NTase domains.
Figure 5: Architecture of the ligase active site for DNA adenylylation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Gellert, M. Formation of covalent circles of lambda DNA by E. coli extracts. Proc. Natl. Acad. Sci. USA 57, 148–155 (1967).

    Article  CAS  Google Scholar 

  2. Zimmerman, S.B., Little, J.W., Oshinsky, C.K. & Gellert, M. Enzymatic joining of DNA strands: a novel reaction of diphosphopyridine nucleotide. Proc. Natl. Acad. Sci. USA 57, 1841–1848 (1967).

    Article  CAS  Google Scholar 

  3. Little, J.W., Zimmerman, S.B., Oshinsky, C.K. & Gellert, M. Enzymatic joining of DNA strands, II: an enzyme-adenylate intermediate in the DPN-dependent DNA ligase reaction. Proc. Natl. Acad. Sci. USA 58, 2004–2011 (1967).

    Article  CAS  Google Scholar 

  4. Olivera, B.M. & Lehman, I.R. Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli. Proc. Natl. Acad. Sci. USA 57, 1426–1433 (1967).

    Article  CAS  Google Scholar 

  5. Olivera, B.M. & Lehman, I.R. Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme from Escherichia coli. Proc. Natl. Acad. Sci. USA 57, 1700–1704 (1967).

    Article  CAS  Google Scholar 

  6. Olivera, B.M., Hall, Z.W. & Lehman, I.R. Enzymatic joining of polynucleotides, V: a DNA-adenylate intermediate in the polynucleotide-joining reaction. Proc. Natl. Acad. Sci. USA 61, 237–244 (1968).

    Article  CAS  Google Scholar 

  7. Weiss, B. & Richardson, C.C. Enzymatic breakage and joining of deoxyribonucleic acid, I: repair of single-strand breaks in DNA by and enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Natl. Acad. Sci. USA 57, 1021–1028 (1967).

    Article  CAS  Google Scholar 

  8. Weiss, B. & Richardson, C.C. Enzymatic breakage and joining of deoxyribonucleic acid, III: an enzyme-adenylate intermediate in the polynucleotide ligase reaction. J. Biol. Chem. 242, 4270–4278 (1967).

    CAS  PubMed  Google Scholar 

  9. Gefter, M.L., Becker, A. & Hurwitz, J. The enzymatic repair of DNA, I: formation of circular DNA. Proc. Natl. Acad. Sci. USA 58, 240–247 (1967).

    Article  CAS  Google Scholar 

  10. Becker, A., Lyn, G., Gefter, M. & Hurwitz, J. The enzymatic repair of DNA, II: characterization of phaged-induced sealase. Proc. Natl. Acad. Sci. USA 58, 1996–2003 (1967).

    Article  CAS  Google Scholar 

  11. Tomkinson, A.E., Vijayakumar, S., Pascal, J.M. & Ellenberger, T. DNA ligases: structure, reaction mechanism, and function. Chem. Rev. 106, 687–699 (2006).

    Article  CAS  Google Scholar 

  12. Subramanya, H.S., Doherty, A.J., Ashford, S.R. & Wigley, D.B. Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85, 607–615 (1996).

    Article  CAS  Google Scholar 

  13. Lee, J.Y. et al. Crystal structure of NAD+-dependent DNA ligase: modular architecture and functional implications. EMBO J. 19, 1119–1129 (2000).

    Article  CAS  Google Scholar 

  14. Odell, M., Sriskanda, V., Shuman, S. & Nikolov, D.B. Crystal structure of eukaryotic DNA ligase-adenylate illuminates the mechanism of nick sensing and strand joining. Mol. Cell 6, 1183–1193 (2000).

    Article  CAS  Google Scholar 

  15. Pascal, J.M., O'Brien, P.J., Tomkinson, A.E. & Ellenberger, T. Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432, 473–478 (2004).

    Article  CAS  Google Scholar 

  16. Akey, D. et al. Crystal structure and nonhomologous end joining function of the ligase domain of Mycobacterium DNA ligase D. J. Biol. Chem. 281, 13412–13423 (2006).

    Article  CAS  Google Scholar 

  17. Pascal, J.M. et al. A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. Mol. Cell 24, 279–291 (2006).

    Article  CAS  Google Scholar 

  18. Nishida, H., Kiyonari, S., Ishino, Y. & Morikawa, K. The closed structure of an archaeal DNA ligase from Pyrococcus furiosus. J. Mol. Biol. 360, 956–967 (2006).

    Article  CAS  Google Scholar 

  19. Nandakumar, J., Nair, P.A. & Shuman, S. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol. Cell 26, 257–271 (2007).

    Article  CAS  Google Scholar 

  20. Nandakumar, J., Shuman, S. & Lima, C.D. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward. Cell 127, 71–84 (2006).

    Article  CAS  Google Scholar 

  21. El Omari, K., Ren, J., Bird, L.E., Bona, M.K., Klarman, G., Legrice, S.F. & Stammers, D.K. Molecular architecture and ligand recognition determinants for T4 RNA ligase. J. Biol. Chem. 281, 1573–1579 (2006).

    Article  CAS  Google Scholar 

  22. Håkansson, K., Doherty, A.J., Shuman, S. & Wigley, D.B. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89, 545–553 (1997).

    Article  Google Scholar 

  23. Shuman, S. & Lima, C.D. The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases. Curr. Opin. Struct. Biol. 14, 757–764 (2004).

    Article  CAS  Google Scholar 

  24. Sriskanda, V. & Shuman, S. Mutational analysis of Chlorella virus DNA ligase: catalytic roles of domain I and motif VI. Nucleic Acids Res. 26, 4618–4625 (1998).

    Article  CAS  Google Scholar 

  25. Sriskanda, V. & Shuman, S. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+. J. Biol. Chem. 277, 9695–9700 (2002).

    Article  CAS  Google Scholar 

  26. Gajiwala, K.S. & Pinko, C. Structural rearrangement accompanying NAD+ synthesis within a bacterial DNA ligase crystal. Structure 12, 1449–1459 (2004).

    Article  CAS  Google Scholar 

  27. Ho, C.K., Van Etten, J.L. & Shuman, S. Characterization of an ATP-dependent DNA ligase encoded by Chlorella virus PBCV-1. J. Virol. 71, 1931–1937 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sriskanda, V. & Shuman, S. Chlorella virus DNA ligase: nick recognition and mutational analysis. Nucleic Acids Res. 26, 525–531 (1998).

    Article  CAS  Google Scholar 

  29. Odell, M. & Shuman, S. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA. J. Biol. Chem. 274, 14032–14039 (1999).

    Article  CAS  Google Scholar 

  30. Sekiguchi, J. & Shuman, S. Nick sensing by DNA ligase requires a 5′ phosphate at the nick and occupancy of the adenylate binding site on the enzyme. J. Virol. 71, 9679–9684 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nandakumar, J. & Shuman, S. How an RNA ligase discriminates RNA versus DNA damage. Mol. Cell 16, 211–221 (2004).

    Article  CAS  Google Scholar 

  32. Sriskanda, V., Schwer, B., Ho, C.K. & Shuman, S. Mutational analysis of E. coli DNA ligase identifies amino acids required for nick-ligation in vitro and for in vivo complementation of the growth of yeast cells deleted for CDC9 and LIG4. Nucleic Acids Res. 27, 3953–3963 (1999).

    Article  CAS  Google Scholar 

  33. Odell, M., Malinina, L., Sriskanda, V., Teplova, M. & Shuman, S. Analysis of the DNA joining repertoire of Chlorella virus DNA ligase and a new crystal structure of the ligase-adenylate intermediate. Nucleic Acids Res. 31, 5090–5100 (2003).

    Article  CAS  Google Scholar 

  34. Pascal, J.M. & Ellenberger, T. RNA ligase does the AMP shuffle. Nat. Struct. Mol. Biol. 13, 950–951 (2006).

    Article  CAS  Google Scholar 

  35. Marchetti, C. et al. Identification of a novel motif in DNA ligases exemplified by DNA ligase IV. DNA Repair (Amst.) 5, 788–798 (2006).

    Article  CAS  Google Scholar 

  36. Sriskanda, V. & Shuman, S. Specificity and fidelity of strand joining by Chlorella virus DNA ligase. Nucleic Acids Res. 26, 3536–3541 (1998).

    Article  CAS  Google Scholar 

  37. Sriskanda, V. & Shuman, S. Role of nucleotidyltransferase motifs I, III and IV in the catalysis of phosphodiester bond formation by Chlorella virus DNA ligase. Nucleic Acids Res. 30, 903–911 (2002).

    Article  CAS  Google Scholar 

  38. Nandakumar, J. & Shuman, S. Dual mechanisms whereby a broken RNA end assists the catalysis of its repair by T4 RNA ligase 2. J. Biol. Chem. 280, 23484–23489 (2005).

    Article  CAS  Google Scholar 

  39. Shuman, S. Vaccinia DNA ligase: specificity, fidelity, and inhibition. Biochemistry 34, 16138–16147 (1995).

    Article  CAS  Google Scholar 

  40. Ahel, I. et al. The neurodegenerative disease protein resolves abortive DNA ligation intermediates. Nature 443, 713–716 (2006).

    Article  CAS  Google Scholar 

  41. Gong, C. et al. Mechanism of nonhomologous end-joining in mycobacteria: a low fidelity repair system driven by Ku, ligase D and ligase C. Nat. Struct. Mol. Biol. 12, 304–312 (2005).

    Article  CAS  Google Scholar 

  42. Gong, C., Martins, A., Bongiorno, P., Glickman, M. & Shuman, S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J. Biol. Chem. 279, 20594–20606 (2004).

    Article  CAS  Google Scholar 

  43. Weller, G.R. et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686–1689 (2002).

    Article  CAS  Google Scholar 

  44. Doherty, A.J., Ashford, S.R. & Wigley, D.B. Characterization of proteolytic fragments of bacteriophage T7 DNA ligase. Nucleic Acids Res. 24, 2281–2287 (1996).

    Article  CAS  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project. Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  47. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  48. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the Maximum-Likelihood Method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  49. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–118 (1991).

    Article  Google Scholar 

  50. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  51. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

This paper is inspired by the 40th anniversary of the discovery of viral ATP-dependent DNA ligases by Charles Richardson and Jerry Hurwitz. This work was supported by US National Institutes of Health grants GM63611 (S.S.) and GM61906 (C.D.L.). S.S. is an American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart Shuman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 2133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, P., Nandakumar, J., Smith, P. et al. Structural basis for nick recognition by a minimal pluripotent DNA ligase. Nat Struct Mol Biol 14, 770–778 (2007). https://doi.org/10.1038/nsmb1266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing