Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of Dnl4–Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination

Abstract

Nonhomologous end joining (NHEJ) eliminates DNA double-strand breaks (DSBs) in bacteria and eukaryotes. In Saccharomyces cerevisiae, there are pairwise physical interactions among the core complexes of the NHEJ pathway, namely Yku70–Yku80 (Ku), Dnl4–Lif1 and Mre11–Rad50–Xrs2 (MRX). However, MRX also has a key role in the repair of DSBs by homologous recombination (HR). Here we have examined the assembly of NHEJ complexes at DSBs biochemically and by chromatin immunoprecipitation. Ku first binds to the DNA end and then recruits Dnl4–Lif1. Notably, Dnl4–Lif1 stabilizes the binding of Ku to in vivo DSBs. Ku and Dnl4–Lif1 not only initiate formation of the nucleoprotein NHEJ complex but also attenuate HR by inhibiting DNA end resection. Therefore, Dnl4–Lif1 plays an important part in determining repair pathway choice by participating at an early stage of DSB engagement in addition to providing the DNA ligase activity that completes NHEJ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of Ku, MRX and Dnl4–Lif1 with DNA visualized by SPR.
Figure 2: DNA–protein complex formation by Ku, Dnl4–Lif1 and MRX in EMSAs.
Figure 3: Assembly of NHEJ factors at an in vivo DSB site in mutant strains lacking one of the core NHEJ proteins.
Figure 4: Genetic inactivation of the Dnl4–Lif1 complex results in increased cellular resistance to DNA-damaging agents that cause DSBs.
Figure 5: Dnl4–Lif1 suppresses mating type gene conversion at G1.
Figure 6: Dnl4–Lif1 suppresses HR by inhibiting end resection and Rad51 filament formation.

Similar content being viewed by others

References

  1. Krejci, L., Chen, L., Van Komen, S., Sung, P. & Tomkinson, A. Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog. Nucleic Acid Res. Mol. Biol. 74, 159–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Lieber, M.R. Warner-Lambert/Parke-Davis Award Lecture. Pathological and physiological double-strand breaks: roles in cancer, aging, and the immune system. Am. J. Pathol. 153, 1323–1332 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson, S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23, 687–696 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Roth, D.B., Porter, T.N. & Wilson, J.H. Mechanisms of nonhomologous recombination in mammalian cells. Mol. Cell. Biol. 5, 2599–2607 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Daley, J.M., Palmbos, P.L., Wu, D. & Wilson, T.E. Nonhomologous end joining in yeast. Annu. Rev. Genet. 39, 431–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Hefferin, M.L. & Tomkinson, A.E. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst.) 4, 639–648 (2005).

    Article  CAS  Google Scholar 

  7. Featherstone, C. & Jackson, S.P. Ku, a DNA repair protein with multiple cellular functions? Mutat. Res. 434, 3–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Gottlieb, T.M. & Jackson, S.P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Spagnolo, L., Rivera-Calzada, A., Pearl, L.H. & Llorca, O. Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol. Cell 22, 511–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Weterings, E., Verkaik, N.S., Bruggenwirth, H.T., Hoeijmakers, J.H. & van Gent, D.C. The role of DNA dependent protein kinase in synapsis of DNA ends. Nucleic Acids Res. 31, 7238–7246 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, L., Trujillo, K., Ramos, W., Sung, P. & Tomkinson, A.E. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol. Cell 8, 1105–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Grawunder, U. et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Wilson, T.E., Grawunder, U. & Lieber, M.R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495–498 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Schar, P., Herrmann, G., Daly, G. & Lindahl, T. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev. 11, 1912–1924 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herrmann, G., Lindahl, T. & Schar, P. Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J. 17, 4188–4198 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Teo, S.H. & Jackson, S.P. Lif1p targets the DNA ligase Lig4p to sites of DNA double-strand breaks. Curr. Biol. 10, 165–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Palmbos, P.L., Daley, J.M. & Wilson, T.E. Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol. Cell. Biol. 25, 10782–10790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. West, R.B., Yaneva, M. & Lieber, M.R. Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol. Cell. Biol. 18, 5908–5920 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shim, E.Y., Ma, J.L., Oum, J.H., Yanez, Y. & Lee, S.E. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol. 25, 3934–3944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shim, E.Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell. Biol. 27, 1602–1613 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S.E., Paques, F., Sylvan, J. & Haber, J.E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Frank-Vaillant, M. & Marcand, S. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol. Cell 10, 1189–1199 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Ivanov, E.L., Sugawara, N., White, C.I., Fabre, F. & Haber, J.E. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 3414–3425 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ira, G. et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431, 1011–1017 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bressan, D.A., Olivares, H.A., Nelms, B.E. & Petrini, J.H. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150, 591–600 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. O'Neill, L.P. & Turner, B.M. Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clikeman, J.A., Khalsa, G.J., Barton, S.L. & Nickoloff, J.A. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics 157, 579–589 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, S.E. et al. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Nugent, C.I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Leroy, C. et al. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell 11, 827–835 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Bressan, D.A., Baxter, B.K. & Petrini, J.H. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7681–7687 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nick McElhinny, S.A., Snowden, C.M., McCarville, J. & Ramsden, D.A. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20, 2996–3003 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, L., Trujillo, K., Sung, P. & Tomkinson, A.E. Interactions of the DNA ligase IV–XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J. Biol. Chem. 275, 26196–26205 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kysela, B. et al. Ku stimulation of DNA ligase IV-dependent ligation requires inward movement along the DNA molecule. J. Biol. Chem. 278, 22466–22474 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Dynan, W.S. & Yoo, S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 26, 1551–1559 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeFazio, L.G., Stansel, R.M., Griffith, J.D. & Chu, G. Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J. 21, 3192–3200 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Calsou, P., Delteil, C., Frit, P., Drouet, J. & Salles, B. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J. Mol. Biol. 326, 93–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Costantini, S., Woodbine, L., Andreoli, L., Jeggo, P.A. & Vindigni, A. Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK. DNA Repair (Amst.) 6, 712–722 (2007).

    Article  CAS  Google Scholar 

  41. Mari, P.O. et al. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Natl. Acad. Sci. USA 103, 18597–18602 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, Y. & Lieber, M.R. DNA length-dependent cooperative interactions in the binding of Ku to DNA. Biochemistry 40, 9638–9646 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Allen, C., Kurimasa, A., Brenneman, M.A., Chen, D.J. & Nickoloff, J.A. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc. Natl. Acad. Sci. USA 99, 3758–3763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fukushima, T. et al. Genetic analysis of the DNA-dependent protein kinase reveals an inhibitory role of Ku in late S-G2 phase DNA double-strand break repair. J. Biol. Chem. 276, 44413–44418 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Hochegger, H. et al. Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J. 25, 1305–1314 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Modesti, M., Hesse, J.E. & Gellert, M. DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J. 18, 2008–2018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valencia, M. et al. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 414, 666–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Ooi, S.L., Shoemaker, D.D. & Boeke, J.D.A. DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 2552–2556 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Frank-Vaillant, M. & Marcand, S. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev. 15, 3005–3012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilson, T.E. & Lieber, M.R. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase β (Pol4)-dependent pathway. J. Biol. Chem. 274, 23599–23609 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, X., Wilson, T.E. & Lieber, M.R. A role for FEN-1 in nonhomologous DNA end joining: the order of strand annealing and nucleolytic processing events. Proc. Natl. Acad. Sci. USA 96, 1303–1308 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tseng, H.M. & Tomkinson, A.E. A physical and functional interaction between yeast Pol4 and Dnl4–Lif1 links DNA synthesis and ligation in nonhomologous end joining. J. Biol. Chem. 277, 45630–45637 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Tseng, H.M. & Tomkinson, A.E. Processing and joining of DNA ends coordinated by interactions among Dnl4/Lif1, Pol4, and FEN-1. J. Biol. Chem. 279, 47580–47588 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. O'Driscoll, M. et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol. Cell 8, 1175–1185 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, J. & Dynan, W.S. Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction. Nucleic Acids Res. 30, 667–674 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Udayakumar, D., Bladen, C.L., Hudson, F.Z. & Dynan, W.S. Distinct pathways of nonhomologous end joining that are differentially regulated by DNA-dependent protein kinase-mediated phosphorylation. J. Biol. Chem. 278, 41631–41635 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Wolner, B., van Komen, S., Sung, P. & Peterson, C.L. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol. Cell 12, 221–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, H.S. & Brill, S.J. MEC1-dependent phosphorylation of yeast RPA1 in vitro. DNA Repair (Amst.) 2, 1321–1335 (2003).

    Article  CAS  Google Scholar 

  59. Gelbart, M.E., Rechsteiner, T., Richmond, T.J. & Tsukiyama, T. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol. Cell. Biol. 21, 2098–2106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pellicioli, A., Lee, S.E., Lucca, C., Foiani, M. & Haber, J.E. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage–induced G2/M arrest. Mol. Cell 7, 293–300 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Haber and members of the S.E.L. and A.E.T. laboratories for comments and discussion of the manuscript and M. Murphy for help with design and interpretation of the SPR experiments. This work was supported by a pilot grant from San Antonio Cancer Institute (to S.E.L.) and the US National Institutes of Health (grants ES012244 to S.E.L., GM47251 to A.E.T. and R01ES07061 to P.S. and a Structural Cell Biology of DNA Repair Program grant CA92584 to A.E.T. and P.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z contributed the data for Figures 3,4,5,6 and Supplementary Figures 3,4,5. M.L.H. contributed purified Ku and the data for Figure 1 and Supplementary Figure 1. L.C. contributed purified Ku, initial ChIP data, purified Dnl4–Lif1 and the data for Figure 2. E.Y.S. and Y.Z. produced Supplementary Figure 2. H.-M.T. contributed the Lif1 antibody and purified Dnl4–Lif1. Y.K. and P.S. contributed purified MRX. A.E.T and S.E.L. directed the project and analyzed the data. A.E.T., S.E.L. and P.S. wrote the manuscript.

Corresponding authors

Correspondence to Sang Eun Lee or Alan E Tomkinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

DNA binding by MRX and Dnl4-Lif1 visualized by SPR (PDF 163 kb)

Supplementary Fig. 2

Kinetics of recruitment of the core NHEJ factors to an in vivo DSB (PDF 231 kb)

Supplementary Fig. 3

Kinetics of DSB induction at the MAT locus in haploid yeast strains with the indicated gene deletions (PDF 134 kb)

Supplementary Fig. 4

The increased binding of Ku protein to a DSB in the absence of a functional MRX complex is not due to inefficiency of end resection (PDF 189 kb)

Supplementary Fig. 5

FACS profiles of G1-arrested JKM161 or SLY1A derivatives (PDF 369 kb)

Supplementary Table 1

Calculated equilibrium dissociation constants using a 1:1 Langmuir fitting model (PDF 44 kb)

Supplementary Table 2

Genotypes of strains used in this work (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Hefferin, M., Chen, L. et al. Role of Dnl4–Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination. Nat Struct Mol Biol 14, 639–646 (2007). https://doi.org/10.1038/nsmb1261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing