Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines

Abstract

One of the most prevalent base modifications involved in decoding is uridine 5-oxyacetic acid at the wobble position of tRNA. It has been known for several decades that this modification enables a single tRNA to decode all four codons in a degenerate codon box. We have determined structures of an anticodon stem-loop of tRNAVal containing the modified uridine with all four valine codons in the decoding site of the 30S ribosomal subunit. An intramolecular hydrogen bond involving the modification helps to prestructure the anticodon loop. We found unusual base pairs with the three noncomplementary codon bases, including a G·U base pair in standard Watson-Crick geometry, which presumably involves an enol form for the uridine. These structures suggest how a modification in the uridine at the wobble position can expand the decoding capability of a tRNA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The degeneracy of the genetic code.
Figure 2: cmo5U base-pairs with all four bases at the wobble position of the mRNA.
Figure 3: Comparison of cmo5U·G with standard U·G wobble.
Figure 4: The two pyrimidine-pyrimidine base pairs.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Crick, F.H.C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).

    Article  CAS  Google Scholar 

  2. Sprinzl, M., Horn, C., Brown, M., Ioudovitch, A. & Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998).

    Article  CAS  Google Scholar 

  3. Mitra, S.K., Lustig, F., Akesson, B. & Lagerkvist, U. Codon-anticodon recognition in the valine codon family. J. Biol. Chem. 252, 471–478 (1977).

    CAS  PubMed  Google Scholar 

  4. Mitra, K. & Frank, J. Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy naps. Annu. Rev. Biophys. Biomol. Struct. 35, 299–317 (2006).

    Article  CAS  Google Scholar 

  5. Nasvall, S.J., Chen, P. & Bjork, G.R. The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAPro(cmo5UGG) promotes reading of all four proline codons in vivo. RNA 10, 1662–1673 (2004).

    Article  Google Scholar 

  6. Agris, P.F., Vendeix, F.A. & Graham, W.D. tRNA's wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366, 1–13 (2007).

    Article  CAS  Google Scholar 

  7. Ogle, J.M. & Ramakrishnan, V. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177 (2005).

    Article  CAS  Google Scholar 

  8. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  Google Scholar 

  9. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  10. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  11. Murphy, F.V., IV, Ramakrishnan, V., Malkiewicz, A. & Agris, P.F. The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat. Struct. Mol. Biol. 11, 1186–1191 (2004).

    Article  CAS  Google Scholar 

  12. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  13. Hillen, W., Egert, E., Lindner, H.J., Gassen, H.G. & Vorbrüggen, H. 5-Methoxyuridine: the influence of 5-substituents on the keto-enol tautomerism of the 4-carbonyl group. J. Carbohydr. Nucleosides Nucleotides 5, 23–32 (1978).

    CAS  Google Scholar 

  14. Dabkowska, I., Gutowski, M. & Rak, J. Interaction with glycine increases stability of a mutagenic tautomer of uracil. A density functional theory study. J. Am. Chem. Soc. 127, 2238–2248 (2005).

    Article  CAS  Google Scholar 

  15. Dirheimer, G., Keith, G., Dumas, P. & Westhof, E. The base pair directory. in tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBhandary, U.L.) 111–112 (American Society for Microbiology, Washington, DC, 1995).

    Google Scholar 

  16. Tinoco, I.J. The base pair directory. in The RNA World (eds. Gesteland, R.F. & Atkins, J.F.) 603–607 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  17. Cruse, W.B. et al. Structure of a mispaired RNA double helix at 1.6-A resolution and implications for the prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 91, 4160–4164 (1994).

    Article  CAS  Google Scholar 

  18. Nagaswamy, U. et al. NCIR: a database of non-canonical interactions in known RNA structures. Nucleic Acids Res. 30, 395–397 (2002).

    Article  CAS  Google Scholar 

  19. Mitra, S.K. et al. Relative efficiency of anticodons in reading the valine codons during protein synthesis in vitro. J. Biol. Chem. 254, 6397–6401 (1979).

    CAS  PubMed  Google Scholar 

  20. Sorensen, M.A. et al. Over expression of a tRNA(Leu) isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. J. Mol. Biol. 354, 16–24 (2005).

    Article  CAS  Google Scholar 

  21. Masquida, B. & Westhof, E. On the wobble G·U and related pairs. RNA 6, 9–15 (2000).

    Article  CAS  Google Scholar 

  22. Mizuno, H. & Sundaralingam, M. Stacking of Crick Wobble pair and Watson-Crick pair: stability rules of G-U pairs at ends of helical stems in tRNAs and the relation to codon-anticodon Wobble interaction. Nucleic Acids Res. 5, 4451–4461 (1978).

    Article  CAS  Google Scholar 

  23. Fersht, A.R. Structure and Mechanism in Protein Science (W.H. Freeman, New York, 1998).

    Google Scholar 

  24. Doherty, E.A., Batey, R.T., Masquida, B. & Doudna, J.A. A universal mode of helix packing in RNA. Nat. Struct. Biol. 8, 339–343 (2001).

    Article  CAS  Google Scholar 

  25. Kothe, U. & Rodnina, M.V. Codon reading by tRNAAla with modified uridine in the wobble position. Mol. Cell 25, 167–174 (2007).

    Article  CAS  Google Scholar 

  26. Clemons, W.M., Jr et al. Crystal structure of the 30S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. J. Mol. Biol. 310, 827–843 (2001).

    Article  CAS  Google Scholar 

  27. Sproat, B.S. RNA synthesis using 2′-O-(tert-butyldimethylsilyl) protection. Methods Mol. Biol. 288, 17–32 (2005).

    CAS  PubMed  Google Scholar 

  28. Boudou, V. et al. Synthesis of the anticodon hairpin tRNAfMet containing N-{[9-(b-D-ribofuranosyl)-9H-purin-6-yl]carbamoyl}-L-threonine (=N6-{{[(1S,2R)-1-carboxy-2-hydroxypropyl]amino}-carbonyl}adenosine, t6A). Helv. Chim. Acta 83, 152–161 (2000).

    Article  CAS  Google Scholar 

  29. Gehrke, C.W. & Kuo, K.C. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J. Chromatogr. 471, 3–36 (1989).

    Article  CAS  Google Scholar 

  30. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 50, 760–763 (1994).

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  33. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  34. Kleywegt, G.J. & Jones, T.A. Databases in protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 54, 1119–1131 (1998).

    Article  CAS  Google Scholar 

  35. DeLano, W.L. The PyMOL Molecular Graphics System (Delano Scientific, San Carlos, California, USA, 2006).

    Google Scholar 

  36. Masquida, B., Sauter, C. & Westhof, E. A sulfate pocket formed by three GoU pairs in the 0.97 Å resolution X-ray structure of a nonameric RNA. RNA 5, 1384–1395 (1999).

    Article  CAS  Google Scholar 

  37. Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Sproat for help and advice on the polymer chemistry, W.D. Graham for purification and analysis of ASLVal, A. Kelley for purification and crystallization of 30S subunits, C.M. Dunham and S. Petry for help with synchrotron data collection, R. Ravelli, J. McCarthy and G. Leonard for help with data collection on beamline ID14 at the European Synchrotron Radiation Facility, and L. Passmore and M. Schmeing for helpful comments. This work was funded by the UK Medical Research Council (V.R.) and grants from the US National Institutes of Health (P.F.A. and V.R.), the US National Science Foundation (P.F.A.), the Agouron Institute (V.R.), the Austrian Academy of Sciences (A.W.) and the Polish Ministry of Science and Education (A.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul F Agris or V Ramakrishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Derivatives of cmo5U. (PDF 59 kb)

Supplementary Fig. 2

Unbiased difference density for ribosomal A site. (PDF 113 kb)

Supplementary Fig. 3

Role of m6A37. (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weixlbaumer, A., Murphy, F., Dziergowska, A. et al. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol 14, 498–502 (2007). https://doi.org/10.1038/nsmb1242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing