Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The uncoupled chloride conductance of a bacterial glutamate transporter homolog

Abstract

Glutamate transporters (EAATs) are pivotal in mammalian synaptic transmission, tightly regulating synaptic levels of this excitatory neurotransmitter. In addition to coupled glutamate transport, the EAATs also show an uncoupled Cl conductance, whose physiological importance has recently been demonstrated. Little is yet known about the molecular mechanism of chloride permeation. Here we show that GltPh, a bacterial EAAT homolog whose structure has been determined, displays an uncoupled Cl conductance that can determine the rate of substrate uptake. A mutation analogous to one known to specifically affect Cl movement in EAAT1 has similar effects on GltPh, suggesting that this protein is an excellent structural model for understanding Cl permeation through the EAATs. We also observed an uncoupled Cl conductance in another bacterial EAAT homolog but not in a homolog of the Na+/Cl-coupled neurotransmitter transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GltPh has an uncoupled chloride conductance.
Figure 2: Anion dependence of aspartate transport.
Figure 3: Direct measurement of GltPh anion permeation.
Figure 4: GltPhS65V has altered anion permeation.
Figure 5: Chloride dependence of uptake in other bacterial transporters.

Similar content being viewed by others

References

  1. Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  Google Scholar 

  2. Slotboom, D.J., Konings, W.N. & Lolkema, J.S. Structural features of the glutamate transporter family. Microbiol. Mol. Biol. Rev. 63, 293–307 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zerangue, N. & Kavanaugh, M.P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).

    Article  CAS  Google Scholar 

  4. Veruki, M.L., Morkve, S.H. & Hartveit, E. Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat. Neurosci. 9, 1388–1396 (2006).

    Article  CAS  Google Scholar 

  5. Grant, G.B. & Dowling, J.E. On bipolar cell responses in the teleost retina are generated by two distinct mechanisms. J. Neurophysiol. 76, 3842–3849 (1996).

    Article  CAS  Google Scholar 

  6. Otis, T.S., Kavanaugh, M.P. & Jahr, C.E. Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277, 1515–1518 (1997).

    Article  CAS  Google Scholar 

  7. Billups, B., Rossi, D. & Attwell, D. Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J. Neurosci. 16, 6722–6731 (1996).

    Article  CAS  Google Scholar 

  8. Eliasof, S. & Jahr, C.E. Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc. Natl. Acad. Sci. USA 93, 4153–4158 (1996).

    Article  CAS  Google Scholar 

  9. Fairman, W.A., Vandenberg, R.J., Arriza, J.L., Kavanaugh, M.P. & Amara, S.G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603 (1995).

    Article  CAS  Google Scholar 

  10. Wadiche, J.I., Amara, S.G. & Kavanaugh, M.P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995).

    Article  CAS  Google Scholar 

  11. Wadiche, J.I., Arriza, J.L., Amara, S.G. & Kavanaugh, M.P. Kinetics of a human glutamate transporter. Neuron 14, 1019–1027 (1995).

    Article  CAS  Google Scholar 

  12. Wadiche, J.I. & Kavanaugh, M.P. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J. Neurosci. 18, 7650–7661 (1998).

    Article  CAS  Google Scholar 

  13. Vandenberg, R.J., Arriza, J.L., Amara, S.G. & Kavanaugh, M.P. Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J. Biol. Chem. 270, 17668–17671 (1995).

    Article  CAS  Google Scholar 

  14. Tolner, B., Ubbink-kok, T., Poolman, B. & Konings, W.N. Cation-selectivity of the L-glutamate transporters of E. coli, B. stearothermophillus and B. caldotenax: dependence on the environment in which the proteins are expressed. Mol. Microbiol. 18, 123–133 (1995a).

    Article  CAS  Google Scholar 

  15. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    Article  CAS  Google Scholar 

  16. Yernool, D., Boudker, O., Folta-Stogniew, E. & Gouaux, E. Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. Biochemistry 42, 12981–12988 (2003).

    Article  CAS  Google Scholar 

  17. Bendahan, A., Armon, A., Madani, N., Kavanaugh, M.P. & Kanner, B.I. Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J. Biol. Chem. 275, 37436–37442 (2000).

    Article  CAS  Google Scholar 

  18. Kavanaugh, M.P., Bendahan, A., Zerangue, N., Zhang, Y. & Kanner, B.I. Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J. Biol. Chem. 272, 1703–1708 (1997).

    Article  CAS  Google Scholar 

  19. Ryan, R.M., Mitrovic, A.D. & Vandenberg, R.J. The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J. Biol. Chem. 279, 20742–20751 (2004).

    Article  CAS  Google Scholar 

  20. Slotboom, D.J., Konings, W.N. & Lolkema, J.S. Cysteine-scanning mutagenesis reveals a highly amphipathic, pore-lining membrane-spanning helix in the glutamate transporter GltT. J. Biol. Chem. 276, 10775–10781 (2001).

    Article  CAS  Google Scholar 

  21. Slotboom, D.J., Sobczak, I., Konings, W.N. & Lolkema, J.S. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. Proc. Natl. Acad. Sci. USA 96, 14282–14287 (1999).

    Article  CAS  Google Scholar 

  22. Grunewald, M., Bendahan, A. & Kanner, B.I. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron 21, 623–632 (1998).

    Article  CAS  Google Scholar 

  23. Grunewald, M. & Kanner, B.I. The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J. Biol. Chem. 275, 9684–9689 (2000).

    Article  CAS  Google Scholar 

  24. Seal, R.P. & Amara, S.G. A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation. Neuron 21, 1487–1498 (1998).

    Article  CAS  Google Scholar 

  25. Grunewald, M., Menaker, D. & Kanner, B.I. Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1. J. Biol. Chem. 277, 26074–26080 (2002).

    Article  CAS  Google Scholar 

  26. Borre, L., Kavanaugh, M.P. & Kanner, B.I. Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J. Biol. Chem. 277, 13501–13507 (2002).

    Article  CAS  Google Scholar 

  27. Leighton, B.H., Seal, R.P., Shimamoto, K. & Amara, S.G. A hydrophobic domain in glutamate transporters forms an extracellular helix associated with the permeation pathway for substrates. J. Biol. Chem. 277, 29847–29855 (2002).

    Article  CAS  Google Scholar 

  28. Ryan, R.M. & Vandenberg, R.J. Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J. Biol. Chem. 277, 13494–13500 (2002).

    Article  CAS  Google Scholar 

  29. Arriza, J.L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14, 5559–5569 (1994).

    Article  CAS  Google Scholar 

  30. Boudker, O., Ryan, R.M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    Article  CAS  Google Scholar 

  31. Grewer, C. et al. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44, 11913–11923 (2005).

    Article  CAS  Google Scholar 

  32. Eskandari, S., Kreman, M., Kavanaugh, M.P., Wright, E.M. & Zampighi, G.A. Pentameric assembly of a neuronal glutamate transporter. Proc. Natl. Acad. Sci. USA 97, 8641–8646 (2000).

    Article  CAS  Google Scholar 

  33. Torres-Salazar, D. & Fahlke, C. Intersubunit interactions in EAAT4 glutamate transporters. J. Neurosci. 26, 7513–7522 (2006).

    Article  CAS  Google Scholar 

  34. Gaillard, I., Slotboom, D., Knol, J., Lolkema, J.S. & Konings, W.N. Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus. Biochemistry 35, 6150–6156 (1996).

    Article  CAS  Google Scholar 

  35. Nicholls, D.G. Bioenergetics: An Introduction to the Chemiosmotic Theory (Academic Press, London; New York, 1982).

    Google Scholar 

  36. Verkman, A.S. Development and biological applications of chloride-sensitive fluorescent indicators. Am. J. Physiol. 259, C375–C388 (1990).

    Article  CAS  Google Scholar 

  37. Walden, M. et al. Uncoupling and turnover in a Cl/H+ exchange transporter. J. Gen. Physiol. 129, 317–329 (2007).

    Article  CAS  Google Scholar 

  38. Yamashita, A., Singh, S.K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  Google Scholar 

  39. Galli, A., Blakely, R.D. & DeFelice, L.J. Norepinephrine transporters have channel modes of conduction. Proc. Natl. Acad. Sci. USA 93, 8671–8676 (1996).

    Article  CAS  Google Scholar 

  40. Galli, A., Petersen, C.I., deBlaquiere, M., Blakely, R.D. & DeFelice, L.J. Drosophila serotonin transporters have voltage-dependent uptake coupled to a serotonin-gated ion channel. J. Neurosci. 17, 3401–3411 (1997).

    Article  CAS  Google Scholar 

  41. Ingram, S.L., Prasad, B.M. & Amara, S.G. Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat. Neurosci. 5, 971–978 (2002).

    Article  CAS  Google Scholar 

  42. Mager, S. et al. Conducting states of a mammalian serotonin transporter. Neuron 12, 845–859 (1994).

    Article  CAS  Google Scholar 

  43. Mager, S. et al. Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10, 177–188 (1993).

    Article  CAS  Google Scholar 

  44. Risso, S., DeFelice, L.J. & Blakely, R.D. Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells. J. Physiol. (Lond.) 490, 691–702 (1996).

    Article  CAS  Google Scholar 

  45. Carvelli, L., McDonald, P.W., Blakely, R.D. & Defelice, L.J. Dopamine transporters depolarize neurons by a channel mechanism. Proc. Natl. Acad. Sci. USA 101, 16046–16051 (2004).

    Article  CAS  Google Scholar 

  46. Quick, M. et al. State-dependent conformations of the translocation pathway in the tyrosine transporter Tyt1, a novel neurotransmitter:sodium symporter from Fusobacterium nucleatum. J. Biol. Chem. 281, 26444–26454 (2006).

    Article  CAS  Google Scholar 

  47. Koch, H.P. & Larsson, H.P. Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J. Neurosci. 25, 1730–1736 (2005).

    Article  CAS  Google Scholar 

  48. Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature [comment] 415, 287–294 (2002).

    Article  CAS  Google Scholar 

  49. Roux, M.J. & Supplisson, S. Neuronal and glial glycine transporters have different stoichiometries. Neuron 25, 373–383 (2000).

    Article  CAS  Google Scholar 

  50. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank E. Gouaux (Vollum Institute and Howard Hughes Medical Institute, Oregon Health and Science University) for providing GltPh and LeuTAa plasmids, J. Lolkema (University of Groningen) for providing GltTBs plasmid, S. Singh and E. Gouaux for sharing unpublished results, K. Swartz for incisive comments on the manuscript and P. Curran for expert technical support. R.M.R. is funded by an Australian National Health and Medical Research Council C.J. Martin Postdoctoral Fellowship (ID358779). This work was supported by the US National Institute of Neurological Disorders and Stroke intramural program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A Mindell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, R., Mindell, J. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14, 365–371 (2007). https://doi.org/10.1038/nsmb1230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing