Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity

Abstract

Two members of the AAA+ superfamily, ClpB and Hsp104, collaborate with Hsp70 and Hsp40 to rescue aggregated proteins. However, the mechanisms that elicit and underlie their protein-remodeling activities remain unclear. We report that for both Hsp104 and ClpB, mixtures of ATP and ATP-γS unexpectedly unleash activation, disaggregation and unfolding activities independent of cochaperones. Mutations reveal how remodeling activities are elicited by impaired hydrolysis at individual nucleotide-binding domains. However, for some substrates, mixtures of ATP and ATP-γS abolish remodeling, whereas for others, ATP binding without hydrolysis is sufficient. Remodeling of different substrates necessitates a diverse balance of polypeptide 'holding' (which requires ATP binding but not hydrolysis) and unfolding (which requires ATP hydrolysis). We suggest that this versatility in reaction mechanism enables ClpB and Hsp104 to reactivate the entire aggregated proteome after stress and enables Hsp104 to control prion inheritance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein activation by ClpB or Hsp104 alone.
Figure 2: Reactivation of heat-aggregated proteins by ClpB or Hsp104 alone.
Figure 3: Protein unfolding by ClpB or Hsp104 alone.
Figure 4: Protein remodeling by Hsp104 NBD mutants.
Figure 5: Protein remodeling by ClpB NBD mutants.
Figure 6: Nucleotide hydrolysis by ClpB and Hsp104.
Figure 7: Effects of ATP and ATP-γS on prion remodeling by Hsp104.

Similar content being viewed by others

References

  1. Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  2. Erzberger, J.P. & Berger, J.M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article  CAS  Google Scholar 

  3. Hedges, S.B., Blair, J.E., Venturi, M.L. & Shoe, J.L. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2 (2004).

    Article  Google Scholar 

  4. Sanchez, Y. & Lindquist, S.L. HSP104 required for induced thermotolerance. Science 248, 1112–1115 (1990).

    Article  CAS  Google Scholar 

  5. Squires, C.L., Pedersen, S., Ross, B.M. & Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262 (1991).

    Article  CAS  Google Scholar 

  6. Sanchez, Y., Taulien, J., Borkovich, K.A. & Lindquist, S. Hsp104 is required for tolerance to many forms of stress. EMBO J. 11, 2357–2364 (1992).

    Article  CAS  Google Scholar 

  7. Parsell, D.A., Kowal, A.S., Singer, M.A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994).

    Article  CAS  Google Scholar 

  8. Glover, J.R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    Article  CAS  Google Scholar 

  9. Goloubinoff, P., Mogk, A., Zvi, A.P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).

    Article  CAS  Google Scholar 

  10. Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J. Biol. Chem. 274, 28083–28086 (1999).

    Article  CAS  Google Scholar 

  11. Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 6, 435–450 (2005).

    Article  CAS  Google Scholar 

  12. Lee, S. et al. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  CAS  Google Scholar 

  13. Parsell, D.A., Kowal, A.S. & Lindquist, S. Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J. Biol. Chem. 269, 4480–4487 (1994).

    CAS  PubMed  Google Scholar 

  14. Akoev, V., Gogol, E.P., Barnett, M.E. & Zolkiewski, M. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB. Protein Sci. 13, 567–574 (2004).

    Article  CAS  Google Scholar 

  15. Lum, R., Tkach, J.M., Vierling, E. & Glover, J.R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279, 29139–29146 (2004).

    Article  CAS  Google Scholar 

  16. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11, 607–615 (2004).

    Article  CAS  Google Scholar 

  17. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004).

    Article  CAS  Google Scholar 

  18. Barnett, M.E., Nagy, M., Kedzierska, S. & Zolkiewski, M. The amino-terminal domain of ClpB supports binding to strongly aggregated proteins. J. Biol. Chem. 280, 34940–34945 (2005).

    Article  CAS  Google Scholar 

  19. Cashikar, A.G. et al. Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein. Mol. Cell 9, 751–760 (2002).

    Article  CAS  Google Scholar 

  20. Hattendorf, D.A. & Lindquist, S.L. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J. 21, 12–21 (2002).

    Article  CAS  Google Scholar 

  21. Mogk, A. et al. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J. Biol. Chem. 278, 17615–17624 (2003).

    Article  CAS  Google Scholar 

  22. Schirmer, E.C., Ware, D.M., Queitsch, C., Kowal, A.S. & Lindquist, S.L. Subunit interactions influence the biochemical and biological properties of Hsp104. Proc. Natl. Acad. Sci. USA 98, 914–919 (2001).

    Article  CAS  Google Scholar 

  23. Schlee, S., Groemping, Y., Herde, P., Seidel, R. & Reinstein, J. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. J. Mol. Biol. 306, 889–899 (2001).

    Article  CAS  Google Scholar 

  24. Shorter, J. & Lindquist, S. Navigating the ClpB channel to solution. Nat. Struct. Mol. Biol. 12, 4–6 (2005).

    Article  CAS  Google Scholar 

  25. Schirmer, E.C., Homann, O.R., Kowal, A.S. & Lindquist, S. Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region. Mol. Biol. Cell 15, 2061–2072 (2004).

    Article  CAS  Google Scholar 

  26. Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004).

    Article  CAS  Google Scholar 

  27. Shorter, J. & Lindquist, S. Destruction or potentiation of different prions catalyzed by similar hsp104 remodeling activities. Mol. Cell 23, 425–438 (2006).

    Article  CAS  Google Scholar 

  28. Haslbeck, M., Miess, A., Stromer, T., Walter, S. & Buchner, J. Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280, 23861–23868 (2005).

    Article  CAS  Google Scholar 

  29. Wickner, S. et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl. Acad. Sci. USA 91, 12218–12222 (1994).

    Article  CAS  Google Scholar 

  30. Wickner, S., Hoskins, J. & McKenney, K. Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature 350, 165–167 (1991).

    Article  CAS  Google Scholar 

  31. Zietkiewicz, S., Lewandowska, A., Stocki, P. & Liberek, K. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J. Biol. Chem. 281, 7022–7029 (2006).

    Article  CAS  Google Scholar 

  32. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    Article  CAS  Google Scholar 

  33. Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature 352, 36–42 (1991).

    Article  CAS  Google Scholar 

  34. Dietz, H. & Rief, M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci. USA 101, 16192–16197 (2004).

    Article  CAS  Google Scholar 

  35. Parsell, D.A., Sanchez, Y., Stitzel, J.D. & Lindquist, S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 353, 270–273 (1991).

    Article  CAS  Google Scholar 

  36. Schirmer, E.C., Queitsch, C., Kowal, A.S., Parsell, D.A. & Lindquist, S. The ATPase activity of Hsp104, effects of environmental conditions and mutations. J. Biol. Chem. 273, 15546–15552 (1998).

    Article  CAS  Google Scholar 

  37. Barnett, M.E. & Zolkiewski, M. Site-directed mutagenesis of conserved charged amino acid residues in ClpB from Escherichia coli. Biochemistry 41, 11277–11283 (2002).

    Article  CAS  Google Scholar 

  38. Watanabe, Y.H., Motohashi, K. & Yoshida, M. Roles of the two ATP binding sites of ClpB from Thermus thermophilus. J. Biol. Chem. 277, 5804–5809 (2002).

    Article  CAS  Google Scholar 

  39. Weibezahn, J., Schlieker, C., Bukau, B. & Mogk, A. Characterization of a trap mutant of the AAA+ chaperone ClpB. J. Biol. Chem. 278, 32608–32617 (2003).

    Article  CAS  Google Scholar 

  40. Scheibel, T. & Lindquist, S.L. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat. Struct. Biol. 8, 958–962 (2001).

    Article  CAS  Google Scholar 

  41. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA 100, 4527–4532 (2003).

    Article  CAS  Google Scholar 

  42. Hersch, G.L., Burton, R.E., Bolon, D.N., Baker, T.A. & Sauer, R.T. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 121, 1017–1027 (2005).

    Article  CAS  Google Scholar 

  43. Whiteheart, S.W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 (1994).

    Article  CAS  Google Scholar 

  44. Wang, Q., Song, C. & Li, C.C. Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J. Struct. Biol. 146, 44–57 (2004).

    Article  CAS  Google Scholar 

  45. Mogk, A. et al. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 278, 31033–31042 (2003).

    Article  CAS  Google Scholar 

  46. Schlee, S., Beinker, P., Akhrymuk, A. & Reinstein, J. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK. J. Mol. Biol. 336, 275–285 (2004).

    Article  CAS  Google Scholar 

  47. Kedzierska, S., Chesnokova, L.S., Witt, S.N. & Zolkiewski, M. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli. Arch. Biochem. Biophys. 444, 61–65 (2005).

    Article  CAS  Google Scholar 

  48. Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 279, 44376–44383 (2004).

    Article  CAS  Google Scholar 

  49. Martin, A., Baker, T.A. & Sauer, R.T. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature 437, 1115–1120 (2005).

    Article  CAS  Google Scholar 

  50. Hoskins, J.R. & Wickner, S. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP. Proc. Natl. Acad. Sci. USA 103, 909–914 (2006).

    Article  CAS  Google Scholar 

  51. Hoskins, J.R., Kim, S.Y. & Wickner, S. Substrate recognition by the ClpA chaperone component of ClpAP protease. J. Biol. Chem. 275, 35361–35367 (2000).

    Article  CAS  Google Scholar 

  52. Shacter, E. Organic extraction of Pi with isobutanol/toluene. Anal. Biochem. 138, 416–420 (1984).

    Article  CAS  Google Scholar 

  53. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, an American Heart Association scientist development grant to J.S and NIH grants to M.Z. (GM58626) and S.L. (GM25874). We thank C. Glabe (University of California, Irvine) for the antibody to oligomer and K. Mizuuchi and K. McKenney for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.M.D., J.S. and J.R.H. designed experiments, performed experiments, interpreted data and wrote the manuscript; M.Z., S.L. and S.W. designed experiments, interpreted data and wrote the manuscript.

Corresponding authors

Correspondence to Susan Lindquist or Sue Wickner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, S., Shorter, J., Zolkiewski, M. et al. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol 14, 114–122 (2007). https://doi.org/10.1038/nsmb1198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing