Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural analysis of a prototypical ATPase from the type III secretion system

Abstract

The type III secretion system (T3SS) ATPase is the conserved and essential inner-membrane component involved in the initial stages of selective secretion of specialized T3SS virulence effector proteins from the bacterial cytoplasm through to the infected host cell, a process crucial to subsequent pathogenicity. Here we present the 1.8-Å-resolution crystal structure of the catalytic domain of the prototypical T3SS ATPase EscN from enteropathogenic Escherichia coli (EPEC). Along with in vitro and in vivo mutational analysis, our data show that the T3SS ATPases share similarity with the F1 ATPases but have important structural and sequence differences that dictate their unique secretory role. We also show that T3SS ATPase activity is dependent on EscN oligomerization and describe the molecular features and possible functional implications of a hexameric ring model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall architecture of EscNΔ102-V393P.
Figure 2: Biochemical data for the V393P mutant.
Figure 3: The ATP-binding pocket in EscN, as delineated by soaking of the nonhydrolyzable ATP analog AMP-PNP.
Figure 4: Biochemical analysis of the R366D mutant.
Figure 5: Functional mutants of EscN.
Figure 6: The hexameric T3SS and F1 ATPases.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hueck, C.J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gophna, U., Ron, E.Z. & Graur, D. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151–163 (2003).

    Article  CAS  Google Scholar 

  3. Bennett, J.C. & Hughes, C. From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol. 8, 202–204 (2000).

    Article  CAS  Google Scholar 

  4. Luo, Y. et al. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 8, 1031–1036 (2001).

    Article  CAS  Google Scholar 

  5. Thomas, N.A. et al. CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli. Mol. Microbiol. 57, 1762–1779 (2005).

    Article  CAS  Google Scholar 

  6. Ghosh, P. Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev. 68, 771–795 (2004).

    Article  CAS  Google Scholar 

  7. Akeda, Y. & Galan, J.E. Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains. J. Bacteriol. 186, 2402–2412 (2004).

    Article  CAS  Google Scholar 

  8. Akeda, Y. & Galan, J.E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005).

    Article  CAS  Google Scholar 

  9. Jenks, P.J. et al. A flagellar-specific ATPase (FliI) is necessary for flagellar export in Helicobacter pylori. FEMS Microbiol. Lett. 152, 205–211 (1997).

    Article  CAS  Google Scholar 

  10. Pozidis, C. et al. Type III protein translocase: HrcN is a peripheral ATPase that is activated by oligomerization. J. Biol. Chem. 278, 25816–25824 (2003).

    Article  CAS  Google Scholar 

  11. Woestyn, S., Allaoui, A., Wattiau, P. & Cornelis, G.R. YscN, the putative energizer of the Yersinia Yop secretion machinery. J. Bacteriol. 176, 1561–1569 (1994).

    Article  CAS  Google Scholar 

  12. Schubot, F.D. & Waugh, D.S. A pivotal role for reductive methylation in the de novo crystallization of a ternary complex composed of Yersinia pestis virulence factors YopN, SycN and YscB. Acta Crystallogr. D Biol. Crystallogr. 60, 1981–1986 (2004).

    Article  Google Scholar 

  13. Minamino, T., Gonzalez-Pedrajo, B., Kihara, M., Namba, K. & Macnab, R.M. The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J. Bacteriol. 185, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  14. Pallen, M.J., Bailey, C.M. & Beatson, S.A. Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Protein Sci. 15, 935–941 (2006).

    Article  CAS  Google Scholar 

  15. Thomas, J., Stafford, G.P. & Hughes, C. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc. Natl. Acad. Sci. USA 101, 3945–3950 (2004).

    Article  CAS  Google Scholar 

  16. Zhu, K., Gonzalez-Pedrajo, B. & Macnab, R.M. Interactions among membrane and soluble components of the flagellar export apparatus of Salmonella. Biochemistry 41, 9516–9524 (2002).

    Article  CAS  Google Scholar 

  17. Walker, J.E., Saraste, M., Runswick, M.J. & Gay, N.J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  18. Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  19. Groth, G. Structure of spinach chloroplast F1-ATPase complexed with the phytopathogenic inhibitor tentoxin. Proc. Natl. Acad. Sci. USA 99, 3464–3468 (2002).

    Article  CAS  Google Scholar 

  20. Shirakihara, Y. et al. The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5, 825–836 (1997).

    Article  CAS  Google Scholar 

  21. Claret, L., Calder, S.R., Higgins, M. & Hughes, C. Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol. Microbiol. 48, 1349–1355 (2003).

    Article  CAS  Google Scholar 

  22. Nadanaciva, S., Weber, J., Wilke-Mounts, S. & Senior, A.E. Importance of F1-ATPase residue alpha-Arg-376 for catalytic transition state stabilization. Biochemistry 38, 15493–15499 (1999).

    Article  CAS  Google Scholar 

  23. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  Google Scholar 

  24. Gibbons, C., Montgomery, M.G., Leslie, A.G. & Walker, J.E. The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution. Nat. Struct. Biol. 7, 1055–1061 (2000).

    Article  CAS  Google Scholar 

  25. Abe, A. Passage of bacterial effectors into the host cell. Tanpakushitsu Kakusan Koso 49, 967–970 (2004).

    CAS  PubMed  Google Scholar 

  26. Gauthier, A. & Finlay, B.B. Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J. Bacteriol. 185, 6747–6755 (2003).

    Article  CAS  Google Scholar 

  27. Gauthier, A., Puente, J.L. & Finlay, B.B. Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect. Immun. 71, 3310–3319 (2003).

    Article  CAS  Google Scholar 

  28. Minamino, T. & MacNab, R.M. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol. Microbiol. 35, 1052–1064 (2000).

    Article  CAS  Google Scholar 

  29. Ramamurthi, K.S. & Schneewind, O. Type III protein secretion in yersinia species. Annu. Rev. Cell Dev. Biol. 18, 107–133 (2002).

    Article  CAS  Google Scholar 

  30. Auvray, F., Ozin, A.J., Claret, L. & Hughes, C. Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. J. Mol. Biol. 318, 941–950 (2002).

    Article  CAS  Google Scholar 

  31. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003).

    Article  CAS  Google Scholar 

  32. Minamino, T. & MacNab, R.M. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol. Microbiol. 37, 1494–1503 (2000).

    Article  CAS  Google Scholar 

  33. Guex, N., Diemand, A. & Peitsch, M.C. Protein modelling for all. Trends Biochem. Sci. 24, 364–367 (1999).

    Article  CAS  Google Scholar 

  34. DeLano, W.L. The PyMOL Molecular Graphics System 0.99 edn. (DeLano Scientific, San Carlos, 2002).

    Google Scholar 

  35. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. Schneider, T.R. & Sheldrick, G. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  39. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  40. Deng, W. et al. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect. Immun. 73, 2135–2146 (2005).

    Article  CAS  Google Scholar 

  41. Schubot, F.D. et al. Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J. Mol. Biol. 346, 1147–1161 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.L. Lovering, C.K. Yip and P.I. Lario for discussions, C.K. Yip for performing the static light-scattering analysis, N.A. Thomas for reagents and the staff at Advanced Light Source beamline 8.2.2 for data collection time and assistance. R.Z. is supported by postdoctoral fellowships from Izaak Walton Killam Research, the Michael Smith Foundation for Health Research (MSFHR) and the Canadian Institutes of Health Research (CIHR). N.C.J.S. and B.B.F. thank the Howard Hughes International Scholar program and the CIHR for funding. N.C.J.S. also thanks the MSFHR and the Canada Foundation for Innovation for infrastructure funding support. N.C.J.S. is an MSFHR Senior Scholar and CIHR Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie C J Strynadka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

EscN structure. (PDF 1305 kb)

Supplementary Fig. 2

Multiple sequence alignment. (PDF 1766 kb)

Supplementary Table 1

Structural comparison table. (PDF 2042 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarivach, R., Vuckovic, M., Deng, W. et al. Structural analysis of a prototypical ATPase from the type III secretion system. Nat Struct Mol Biol 14, 131–137 (2007). https://doi.org/10.1038/nsmb1196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing