Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene regulation through nuclear organization

Abstract

The nucleus is a highly heterogeneous structure, containing various 'landmarks' such as the nuclear envelope and regions of euchromatin or dense heterochromatin. At a morphological level, regions of the genome that are permissive or repressive to gene expression have been associated with these architectural features. However, gene position within the nucleus can be both a cause and a consequence of transcriptional regulation. New results indicate that the spatial distribution of genes within the nucleus contributes to transcriptional control. In some cases, position seems to ensure maximal expression of a gene. In others, it ensures a heritable state of repression or correlates with a developmentally determined program of tissue-specific gene expression. In this review, we highlight mechanistic links between gene position, repression and transcription. Recent findings suggest that architectural features have multiple functions that depend upon organization into dedicated subcompartments enriched for distinct enzymatic machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proteasome and its role in nuclear pore–associated transcription events.
Figure 2: Polycomb bodies and transcription factories are organized similarly.
Figure 3: Most yeast genes are infrequently transcribed.

Similar content being viewed by others

References

  1. Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).

    CAS  PubMed  Google Scholar 

  2. Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996).

    CAS  PubMed  Google Scholar 

  3. Andrulis, E.D., Neiman, A.M., Zappulla, D.C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998).

    CAS  PubMed  Google Scholar 

  4. Taddei, A., Hediger, F., Neumann, F.R. & Gasser, S.M. The function of nuclear architecture: a genetic approach. Annu. Rev. Genet. 38, 305–345 (2004).

    CAS  PubMed  Google Scholar 

  5. Marshall, W.F., Dernburg, A.F., Harmon, B., Agard, D.A. & Sedat, J.W. Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol. Biol. Cell 7, 825–842 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005–1014 (2006).

    CAS  PubMed  Google Scholar 

  7. Ye, Q., Callebaut, I., Pezhman, A., Courvalin, J.C. & Worman, H.J. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272, 14983–14989 (1997).

    CAS  PubMed  Google Scholar 

  8. Gilbert, N., Gilchrist, S. & Bickmore, W.A. Chromatin organization in the mammalian nucleus. Int. Rev. Cytol. 242, 283–336 (2005).

    CAS  PubMed  Google Scholar 

  9. Croft, J.A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119–1131 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    CAS  PubMed  Google Scholar 

  11. Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    CAS  PubMed  Google Scholar 

  12. Williams, R.R. et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J. Cell Sci. 119, 132–140 (2006).

    CAS  PubMed  Google Scholar 

  13. Chuang, C.H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831 (2006).

    CAS  PubMed  Google Scholar 

  14. Hewitt, S.L., High, F.A., Reiner, S.L., Fisher, A.G. & Merkenschlager, M. Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur. J. Immunol. 34, 3604–3613 (2004).

    CAS  PubMed  Google Scholar 

  15. Ragoczy, T., Bender, M.A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shumaker, D.K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA 103, 8703–8708 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Malhas, A., Lee, C.F., Sanders, R., Saunders, N.J. & Vaux, D.J. Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J. Cell Biol. 176, 593–603 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hutchison, N. & Weintraub, H. Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell 43, 471–482 (1985).

    CAS  PubMed  Google Scholar 

  19. Brickner, J.H. & Walter, P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2, e342 (2004).

    PubMed  PubMed Central  Google Scholar 

  20. Casolari, J.M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427–439 (2004).

    CAS  PubMed  Google Scholar 

  21. Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774–778 (2006).

    CAS  PubMed  Google Scholar 

  22. Cabal, G.G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770–773 (2006).

    CAS  PubMed  Google Scholar 

  23. Dieppois, G., Iglesias, N. & Stutz, F. Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol. Cell. Biol. 26, 7858–7870 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmid, M. et al. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell 21, 379–391 (2006).

    CAS  PubMed  Google Scholar 

  25. Brickner, D.G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).

    PubMed  PubMed Central  Google Scholar 

  26. Akhtar, A. & Gasser, S.M. The nuclear envelope and transcriptional control. Nat. Rev. Genet. 8, 507–517 (2007).

    CAS  PubMed  Google Scholar 

  27. Rea, S. & Akhtar, A. MSL proteins and the regulation of gene expression. Curr. Top. Microbiol. Immunol. 310, 117–140 (2006).

    CAS  PubMed  Google Scholar 

  28. Mendjan, S. et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21, 811–823 (2006).

    CAS  PubMed  Google Scholar 

  29. Tran, E.J. & Wente, S.R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006).

    CAS  PubMed  Google Scholar 

  30. Morerio, C. et al. Inversion (11)(p15q22) with NUP98–DDX10 fusion gene in pediatric acute myeloid leukemia. Cancer Genet. Cytogenet. 171, 122–125 (2006).

    CAS  PubMed  Google Scholar 

  31. Wang, G.G., Cai, L., Pasillas, M.P. & Kamps, M.P. NUP98–NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat. Cell Biol. 9, 804–812 (2007).

    CAS  PubMed  Google Scholar 

  32. Daniel, J.A. & Grant, P.A. Multi-tasking on chromatin with the SAGA coactivator complexes. Mutat. Res. 618, 135–148 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Luthra, R. et al. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J. Biol. Chem. 282, 3042–3049 (2007).

    CAS  PubMed  Google Scholar 

  34. Lee, D. et al. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123, 423–436 (2005).

    CAS  PubMed  Google Scholar 

  35. Wilkinson, C.R. et al. Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J. 17, 6465–6476 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Enenkel, C., Lehmann, A. & Kloetzel, P.M. GFP-labelling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol. Biol. Rep. 26, 131–135 (1999).

    CAS  PubMed  Google Scholar 

  37. Collins, G.A. & Tansey, W.P. The proteasome: a utility tool for transcription? Curr. Opin. Genet. Dev. 16, 197–202 (2006).

    CAS  PubMed  Google Scholar 

  38. Wood, A., Schneider, J., Dover, J., Johnston, M. & Shilatifard, A. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278, 34739–34742 (2003).

    CAS  PubMed  Google Scholar 

  39. Henry, K.W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648–2663 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637–651 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ezhkova, E. & Tansey, W.P. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol. Cell 13, 435–442 (2004).

    CAS  PubMed  Google Scholar 

  42. Gillette, T.G., Gonzalez, F., Delahodde, A., Johnston, S.A. & Kodadek, T. Physical and functional association of RNA polymerase II and the proteasome. Proc. Natl. Acad. Sci. USA 101, 5904–5909 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Auld, K.L., Brown, C.R., Casolari, J.M., Komili, S. & Silver, P.A. Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates. Mol. Cell 21, 861–871 (2006).

    CAS  PubMed  Google Scholar 

  44. Sikder, D., Johnston, S.A. & Kodadek, T. Widespread, but non-identical, association of proteasomal 19 and 20 S proteins with yeast chromatin. J. Biol. Chem. 281, 27346–27355 (2006).

    CAS  PubMed  Google Scholar 

  45. Abruzzi, K.C., Belostotsky, D.A., Chekanova, J.A., Dower, K. & Rosbash, M. 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J. 25, 4253–4262 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gartenberg, M.R., Neumann, F.R., Laroche, T., Blaszczyk, M. & Gasser, S.M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119, 955–967 (2004).

    CAS  PubMed  Google Scholar 

  47. Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. & Tansey, W.P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001).

    CAS  PubMed  Google Scholar 

  48. Eils, R. et al. Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell Biol. 135, 1427–1440 (1996).

    CAS  PubMed  Google Scholar 

  49. Heard, E. & Disteche, C.M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848–1867 (2006).

    CAS  PubMed  Google Scholar 

  50. Nguyen, D.K. & Disteche, C.M. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38, 47–53 (2006).

    CAS  PubMed  Google Scholar 

  51. Chaumeil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223–2237 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, L.F., Huynh, K.D. & Lee, J.T. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129, 693–706 (2007).

    CAS  PubMed  Google Scholar 

  53. Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32, 627–632 (2002).

    CAS  PubMed  Google Scholar 

  54. Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).

    CAS  PubMed  Google Scholar 

  55. Schwartz, Y.B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    CAS  PubMed  Google Scholar 

  56. Buchenau, P., Hodgson, J., Strutt, H. & Arndt-Jovin, D.J. The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J. Cell Biol. 141, 469–481 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Saurin, A.J. et al. The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J. Cell Biol. 142, 887–898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Martinez, A.M., Colomb, S., Dejardin, J., Bantignies, F. & Cavalli, G. Polycomb group-dependent Cyclin A repression in Drosophila. Genes Dev. 20, 501–513 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957–971 (2006).

    CAS  PubMed  Google Scholar 

  60. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    CAS  PubMed  Google Scholar 

  61. Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Negre, N. et al. Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol. 4, e170 (2006).

    PubMed  PubMed Central  Google Scholar 

  63. Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    CAS  PubMed  Google Scholar 

  64. Haupt, Y., Bath, M.L., Harris, A.W. & Adams, J.M. bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8, 3161–3164 (1993).

    CAS  PubMed  Google Scholar 

  65. Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    CAS  PubMed  Google Scholar 

  66. Martinez, A.M. & Cavalli, G. The role of polycomb group proteins in cell cycle regulation during development. Cell Cycle 5, 1189–1197 (2006).

    CAS  PubMed  Google Scholar 

  67. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    CAS  PubMed  Google Scholar 

  68. Bantignies, F., Grimaud, C., Lavrov, S., Gabut, M. & Cavalli, G. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev. 17, 2406–2420 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vazquez, J., Muller, M., Pirrotta, V. & Sedat, J.W. The Mcp element mediates stable long-range chromosome-chromosome interactions in Drosophila. Mol. Biol. Cell 17, 2158–2165 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jackson, D.A., Hassan, A.B., Errington, R.J. & Cook, P.R. Visualization of focal sites of transcription within human nuclei. EMBO J. 12, 1059–1065 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wansink, D.G. et al. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J. Cell Biol. 122, 283–293 (1993).

    CAS  PubMed  Google Scholar 

  72. Iborra, F.J., Pombo, A., Jackson, D.A. & Cook, P.R. Active RNA polymerases are localized within discrete transcription “factories' in human nuclei. J. Cell Sci. 109, 1427–1436 (1996).

    CAS  PubMed  Google Scholar 

  73. Pombo, A. et al. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J. 18, 2241–2253 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Faro-Trindade, I. & Cook, P.R. A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value. Mol. Biol. Cell 17, 2910–2920 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ficz, G., Heintzmann, R. & Arndt-Jovin, D.J. Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132, 3963–3976 (2005).

    CAS  PubMed  Google Scholar 

  76. Phair, R.D. et al. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24, 6393–6402 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kimura, H., Sugaya, K. & Cook, P.R. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159, 777–782 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kimura, H., Tao, Y., Roeder, R.G. & Cook, P.R. Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol. Cell. Biol. 19, 5383–5392 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hieda, M., Winstanley, H., Maini, P., Iborra, F.J. & Cook, P.R. Different populations of RNA polymerase II in living mammalian cells. Chromosome Res. 13, 135–144 (2005).

    CAS  PubMed  Google Scholar 

  80. Levsky, J.M., Shenoy, S.M., Pezo, R.C. & Singer, R.H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    CAS  PubMed  Google Scholar 

  81. Osborne, C.S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071 (2004).

    CAS  PubMed  Google Scholar 

  82. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    PubMed  PubMed Central  Google Scholar 

  83. Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209–213 (1995).

    CAS  PubMed  Google Scholar 

  84. Chubb, J.R., Trcek, T., Shenoy, S.M. & Singer, R.H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Holstege, F.C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    CAS  PubMed  Google Scholar 

  86. Osborne, C.S. et al. Myc dynamically and preferentially relocates to a transcription factory occupied by igh. PLoS Biol. 5, e192 (2007).

    PubMed  PubMed Central  Google Scholar 

  87. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    CAS  PubMed  Google Scholar 

  88. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    CAS  PubMed  Google Scholar 

  89. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Osborne, F. Bantignies and G. Cavalli for sharing their unpublished work and for helpful discussions. H.S. and S.M.G. are supported by the Swiss National Science Foundation, the Swiss National Center of Competence in Research program 'Frontiers in Genetics' and the Novartis Research Foundation. T.S. and P.F. are supported by the Biological Sciences and Biotechnology Research Council and the Medical Research Council UK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Fraser or Susan M Gasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sexton, T., Schober, H., Fraser, P. et al. Gene regulation through nuclear organization. Nat Struct Mol Biol 14, 1049–1055 (2007). https://doi.org/10.1038/nsmb1324

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing