Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling

Abstract

In bacteria, the initiation of replication is controlled by DnaA, a member of the ATPases associated with various cellular activities (AAA+) protein superfamily. ATP binding allows DnaA to transition from a monomeric state into a large oligomeric complex that remodels replication origins, triggers duplex melting and facilitates replisome assembly. The crystal structure of AMP-PCP–bound DnaA reveals a right-handed superhelix defined by specific protein-ATP interactions. The observed quaternary structure of DnaA, along with topology footprint assays, indicates that a right-handed DNA wrap is formed around the initiation nucleoprotein complex. This model clarifies how DnaA engages and unwinds bacterial origins and suggests that additional, regulatory AAA+ proteins engage DnaA at filament ends. Eukaryotic and archaeal initiators also have the structural elements that promote open-helix formation, indicating that a spiral, open-ring AAA+ assembly forms the core element of initiators in all domains of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of ATP-DnaA.
Figure 2: Organization of AAA+ modules in the helical filament.
Figure 3: A functional, closed nucleotide-interaction pocket in ATP-DnaA.
Figure 4: The initiator helical insert drives filament formation.
Figure 5: Conformational changes induced by ATP binding.
Figure 6: The DnaA filament in the context of the nucleoprotein complex.
Figure 7: Hda has a conserved box VII motif that is essential for regulation of DnaA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Giraldo, R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol. Rev. 26, 533–554 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Iyer, L.M., Leipe, D.D., Koonin, E.V. & Aravind, L. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146, 11–31 (2004).

    CAS  PubMed  Google Scholar 

  3. Erzberger, J.P. & Berger, J.M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 93–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Robinson, N.P. & Bell, S.D. Origins of DNA replication in the three domains of life. FEBS J. 272, 3757–3766 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, D.G. & Bell, S.P. ATPase switches controlling DNA replication initiation. Curr. Opin. Cell Biol. 12, 280–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Messer, W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol. Rev. 26, 355–374 (2002).

    CAS  PubMed  Google Scholar 

  7. Leonard, A.C. & Grimwade, J.E. Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding. Mol. Microbiol. 55, 978–985 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Funnell, B.E., Baker, T.A. & Kornberg, A. In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J. Biol. Chem. 262, 10327–10334 (1987).

    CAS  PubMed  Google Scholar 

  9. Davey, M.J., Fang, L., McInerney, P., Georgescu, R.E. & O'Donnell, M. The DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J. 21, 3148–3159 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang, L., Davey, M.J. & O'Donnell, M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol. Cell 4, 541–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Kato, J. & Katayama, T. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. EMBO J. 20, 4253–4262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujikawa, N. et al. Structural basis of replication origin recognition by the DnaA protein. Nucleic Acids Res. 31, 2077–2086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mackiewicz, P., Zakrzewska-Czerwinska, J., Zawilak, A., Dudek, M.R. & Cebrat, S. Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res. 32, 3781–3791 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cunningham, E.L. & Berger, J.M. Unraveling the early steps of prokaryotic replication. Curr. Opin. Struct. Biol. 15, 68–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Bowman, G.D., O'Donnell, M. & Kuriyan, J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429, 724–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Jeruzalmi, D., O'Donnell, M. & Kuriyan, J. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106, 429–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Erzberger, J.P., Pirruccello, M.M. & Berger, J.M. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J. 21, 4763–4773 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, S.Y. et al. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev. 17, 2552–2563 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo, F., Maurizi, M.R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277, 46743–46752 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Lenzen, C.U., Steinmann, D., Whiteheart, S.W. & Weis, W.I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, R.C., Hanson, P.I., Jahn, R. & Brunger, A.T. Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nat. Struct. Biol. 5, 803–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Felczak, M.M. & Kaguni, J.M. The box VII motif of Escherichia coli DnaA protein is required for DnaA oligomerization at the E. coli replication origin. J. Biol. Chem. 279, 51156–51162 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kawakami, H., Keyamura, K. & Katayama, T. Formation of an ATP-DnaA-specific initiation complex requires DnaA Arginine 285, a conserved motif in the AAA+ protein family. J. Biol. Chem. 280, 27420–27430 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Su'etsugu, M. et al. DNA replication-coupled inactivation of DnaA protein in vitro: a role for DnaA arginine-334 of the AAA+ Box VIII motif in ATP hydrolysis. Mol. Microbiol. 40, 376–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Bramhill, D. & Kornberg, A. A model for initiation at origins of DNA replication. Cell 54, 915–918 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Thanbichler, M., Viollier, P.H. & Shapiro, L. The structure and function of the bacterial chromosome. Curr. Opin. Genet. Dev. 15, 153–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Postow, L., Hardy, C.D., Arsuaga, J. & Cozzarelli, N.R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fuller, R.S., Funnell, B.E. & Kornberg, A. The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38, 889–900 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Speck, C. & Messer, W. Mechanism of origin unwinding: sequential binding of DnaA to double- and single-stranded DNA. EMBO J. 20, 1469–1476 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGarry, K.C., Ryan, V.T., Grimwade, J.E. & Leonard, A.C. Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. Proc. Natl. Acad. Sci. USA 101, 2811–2816 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yung, B.Y. & Kornberg, A. The dnaA initiator protein binds separate domains in the replication origin of Escherichia coli. J. Biol. Chem. 264, 6146–6150 (1989).

    CAS  PubMed  Google Scholar 

  32. Gai, D., Zhao, R., Li, D., Finkielstein, C.V. & Chen, X.S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119, 47–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Marszalek, J. & Kaguni, J.M. DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. J. Biol. Chem. 269, 4883–4890 (1994).

    CAS  PubMed  Google Scholar 

  34. Su'etsugu, M., Takata, M., Kubota, T., Matsuda, Y. & Katayama, T. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex. Genes Cells 9, 509–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Su'etsugu, M., Shimuta, T.R., Ishida, T., Kawakami, H. & Katayama, T. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. J. Biol. Chem. 280, 6528–6536 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Marszalek, J. et al. Domains of DnaA protein involved in interaction with DnaB protein, and in unwinding the Escherichia coli chromosomal origin. J. Biol. Chem. 271, 18535–18542 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Sutton, M.D., Carr, K.M., Vicente, M. & Kaguni, J.M. Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J. Biol. Chem. 273, 34255–34262 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Kelman, L.M. & Kelman, Z. Archaea: an archetype for replication initiation studies? Mol. Microbiol. 48, 605–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Remus, D., Beall, E.L. & Botchan, M.R. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 23, 897–907 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takahashi, N., Tsutsumi, S., Tsuchiya, T., Stillman, B. & Mizushima, T. Functions of sensor 1 and sensor 2 regions of Saccharomyces cerevisiae Cdc6p in vivo and in vitro. J. Biol. Chem. 277, 16033–16040 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Randell, J.C., Bowers, J.L., Rodriguez, H.K. & Bell, S.P. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2–7 helicase. Mol. Cell 21, 29–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Ranjan, A. & Gossen, M. A structural role for ATP in the formation and stability of the human origin recognition complex. Proc. Natl. Acad. Sci. USA 103, 4864–4869 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clarey et al. Nucleotide-dependent conformational changes in the DnaA-like core of the origin-recognition complex. Nat. Struct. Mol. Biol. advance online publication 9 July 2006 (doi: 10.1038/nsmb1121).

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  45. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  49. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D Biol. Crystallogr. 49, 129–147 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Nielsen, J.E. et al. Improving macromolecular electrostatics calculations. Protein Eng. 12, 657–662 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Holton and J. Tanamachi for support at Advanced Light Source beamline 8.3.1 and A. Schoeffler for purifying Topo IB. N. Cozzarelli, M. Botchan, J. Kuriyan, J. Keck, J. Stray and members of the Berger laboratory provided helpful comments and suggestions. This work was supported by the G. Harold and Leila Y. Mathers Charitable Foundation and the US National Institutes of Health (GM071747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M Berger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Representative electron density. (PDF 725 kb)

Supplementary Fig. 2

Aquifex aeolicus origin organization. (PDF 77 kb)

Supplementary Fig. 3

Surface characteristics of the ATP-DnaA filament. (PDF 404 kb)

Supplementary Video 1

Filament structure. (MOV 11654 kb)

Supplementary Video 2

Animation of ADP-to-ATP transition. (MOV 18017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erzberger, J., Mott, M. & Berger, J. Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol 13, 676–683 (2006). https://doi.org/10.1038/nsmb1115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing