Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-step activation of ATM by DNA and the Mre11–Rad50–Nbs1 complex

Abstract

DNA double-strand breaks (DSBs) trigger activation of the ATM protein kinase, which coordinates cell-cycle arrest, DNA repair and apoptosis. We propose that ATM activation by DSBs occurs in two steps. First, dimeric ATM is recruited to damaged DNA and dissociates into monomers. The Mre11–Rad50–Nbs1 complex (MRN) facilitates this process by tethering DNA, thereby increasing the local concentration of damaged DNA. Notably, increasing the concentration of damaged DNA bypasses the requirement for MRN, and ATM monomers generated in the absence of MRN are not phosphorylated on Ser1981. Second, the ATM-binding domain of Nbs1 is required and sufficient to convert unphosphorylated ATM monomers into enzymatically active monomers in the absence of DNA. This model clarifies the mechanism of ATM activation in normal cells and explains the phenotype of cells from patients with ataxia telangiectasia–like disorder and Nijmegen breakage syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dose-dependent activation of ATM by DSBs in the absence of Mre11.
Figure 2: ATM dimer-to-monomer transition can be uncoupled from ATM phosphorylation on Ser1981.
Figure 3: DNA-tethering activity of MRN is required for ATM activation.
Figure 4: ATM is activated by a two-step mechanism in response to DSBs.

Similar content being viewed by others

References

  1. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  Google Scholar 

  2. Bakkenist, C.J. & Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  3. D'Amours, D. & Jackson, S.P. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3, 317–327 (2002).

    Article  CAS  Google Scholar 

  4. Lim, D.S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  CAS  Google Scholar 

  5. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat. Genet. 25, 115–119 (2000).

    Article  CAS  Google Scholar 

  6. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat. Genet. 30, 290–294 (2002).

    Article  Google Scholar 

  7. Yazdi, P.T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002).

    Article  CAS  Google Scholar 

  8. Girard, P.M., Riballo, E., Begg, A.C., Waugh, A. & Jeggo, P.A. Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest. Oncogene 21, 4191–4199 (2002).

    Article  CAS  Google Scholar 

  9. Lee, J.H. et al. Distinct functions of Nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent responses to DNA damage. Mol. Cancer Res. 1, 674–681 (2003).

    CAS  PubMed  Google Scholar 

  10. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    Article  CAS  Google Scholar 

  11. Carson, C.T. et al. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J. 22, 6610–6620 (2003).

    Article  CAS  Google Scholar 

  12. Difilippantonio, S. et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat. Cell Biol. 7, 675–685 (2005).

    Article  CAS  Google Scholar 

  13. Costanzo, V., Paull, T., Gottesman, M. & Gautier, J. Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol. 2, E110 (2004).

    Article  Google Scholar 

  14. You, Z., Chahwan, C., Bailis, J., Hunter, T. & Russell, P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell. Biol. 25, 5363–5379 (2005).

    Article  CAS  Google Scholar 

  15. Mochan, T.A., Venere, M., DiTullio, R.A., Jr. & Halazonetis, T.D. 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res. 63, 8586–8591 (2003).

    CAS  PubMed  Google Scholar 

  16. Lee, J.H. & Paull, T.T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    Article  CAS  Google Scholar 

  17. Kim, J.S., Krasieva, T.B., LaMorte, V., Taylor, A.M. & Yokomori, K. Specific recruitment of human cohesin to laser-induced DNA damage. J. Biol. Chem. 277, 45149–45153 (2002).

    Article  CAS  Google Scholar 

  18. Buscemi, G. et al. Activation of ATM and Chk2 kinases in relation to the amount of DNA strand breaks. Oncogene 23, 7691–7700 (2004).

    Article  CAS  Google Scholar 

  19. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  20. Kitagawa, R., Bakkenist, C.J., McKinnon, P.J. & Kastan, M.B. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev. 18, 1423–1438 (2004).

    Article  CAS  Google Scholar 

  21. Cerosaletti, K. & Concannon, P. Independent roles for nibrin and Mre11-Rad50 in the activation and function of Atm. J. Biol. Chem. 279, 38813–38819 (2004).

    Article  CAS  Google Scholar 

  22. Horejsi, Z. et al. Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 23, 3122–3127 (2004).

    Article  CAS  Google Scholar 

  23. Falck, J., Coates, J. & Jackson, S.P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  Google Scholar 

  24. Cerosaletti, K., Wright, J. & Concannon, P. Active role for nibrin in the kinetics of atm activation. Mol. Cell. Biol. 26, 1691–1699 (2006).

    Article  CAS  Google Scholar 

  25. Lee, J.H. & Paull, T.T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304, 93–96 (2004).

    Article  CAS  Google Scholar 

  26. Costanzo, V. et al. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol. Cell 6, 649–659 (2000).

    Article  CAS  Google Scholar 

  27. Yoo, H.Y., Shevchenko, A., Shevchenko, A. & Dunphy, W.G. Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J. Biol. Chem. 279, 53353–53364 (2004).

    Article  CAS  Google Scholar 

  28. Van den Bosch, M., Bree, R.T. & Lowndes, N.F. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep. 4, 844–849 (2003).

    Article  CAS  Google Scholar 

  29. Moncalian, G. et al. The rad50 signature motif: essential to ATP binding and biological function. J. Mol. Biol. 335, 937–951 (2004).

    Article  CAS  Google Scholar 

  30. Aten, J.A. et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303, 92–95 (2004).

    Article  CAS  Google Scholar 

  31. Lisby, M. & Rothstein, R. DNA damage checkpoint and repair centers. Curr. Opin. Cell Biol. 16, 328–334 (2004).

    Article  CAS  Google Scholar 

  32. Perry, J. & Kleckner, N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112, 151–155 (2003).

    Article  CAS  Google Scholar 

  33. De Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  34. Lin, X.H. et al. Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proc. Natl Acad. Sci. USA 95, 14693–14698 (1998).

    Article  CAS  Google Scholar 

  35. Robertson, K., Hensey, C. & Gautier, J. Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene 18, 7070–7079 (1999).

    Article  CAS  Google Scholar 

  36. Friedland, W., Jacob, P., Paretzke, H.G., Merzagora, M. & Ottolenghi, A. Simulation of DNA fragment distributions after irradiation with photons. Radiat. Environ. Biophys. 38, 39–47 (1999).

    Article  CAS  Google Scholar 

  37. Paull, T.T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank W.G. Dunphy (Caltech) for the complementary DNA encoding ATM protein and T. Paull (University of Texas, Austin) for MRN baculoviruses. We are grateful to R. Baer and the members of Gautier laboratory for their suggestions and critical reading of the manuscript. This work was supported by US National Institutes of Health grant CA 92245 and National Cancer Institute contract N01-CN-25111 to J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Gautier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mre11 binding to DNA is independent of H2AX assembly and phosphorylation (PDF 125 kb)

Supplementary Fig. 2

Phosphorylated and unphosphorylated Mre11 binds DNA (PDF 99 kb)

Supplementary Fig. 3

Monomeric and dimeric ATM binds DNA (PDF 61 kb)

Supplementary Fig. 4

Characterization of recombinant MRN complexes (PDF 114 kb)

Supplementary Fig. 5

Limit of detection of DNA purified from extracts (PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupré, A., Boyer-Chatenet, L. & Gautier, J. Two-step activation of ATM by DNA and the Mre11–Rad50–Nbs1 complex. Nat Struct Mol Biol 13, 451–457 (2006). https://doi.org/10.1038/nsmb1090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing