Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A native to amyloidogenic transition regulated by a backbone trigger

Abstract

Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by β-2-microglobulin (β2m) in dialysis-related amyloidosis. Access of β2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a β2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamic and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type β2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism and structural basis of Cu2+ binding and amyloid assembly.
Figure 2: Discrimination between Cu2+ and Ni2+ in oligomeric assembly.
Figure 3: Differences between Cu2+ and Ni2+ in binding affinity and stability.
Figure 4: Energetics and Cu2+-binding site of β2m oligomeric assembly.
Figure 5: Structural consequences of a trans conformation at position 32.
Figure 6: Structural basis of amyloidogenicity.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Dobson, C.M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe, D.J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Chapman, M.R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huff, M.E., Balch, W.E. & Kelly, J.W. Pathological and functional amyloid formation orchestrated by the secretory pathway. Curr. Opin. Struct. Biol. 13, 674–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Si, K., Lindquist, S. & Kandel, E.R. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Richardson, J.S. & Richardson, D.C. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl Acad. Sci. USA 99, 2754–2759 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stefani, M. & Dobson, C.M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Caughey, B. & Lansbury, P.T., Jr. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Bjorkman, P.J. et al. Structure uf the human class-I histocompatibility antigen, Hla-A2. Nature 329, 506–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Solheim, J.C. Class I MHC molecules: assembly and antigen presentation. Immunol. Rev. 172, 11–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Drueke, T.B. Beta2-microglobulin and amyloidosis. Nephrol. Dial. Transplant. 15 Suppl 1, 17–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Malaguarnera, M. et al. Serum beta2-microglobulin in chronic hepatitis C. Dig. Dis. Sci. 42, 762–766 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Keating, M.J. Chronic lymphocytic leukemia. Semin. Oncol. 26, 107–114 (1999).

    CAS  PubMed  Google Scholar 

  15. Eakin, C.M. & Miranker, A.D. From chance to frequent encounters: origins of beta2-microglobulin fibrillogenesis. Biochim. Biophys. Acta 1753, 92–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Okon, M., Bray, P. & Vucelic, D. 1H NMR assignments and secondary structure of human β2-microglobulin in solution. Biochemistry 31, 8906–8915 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Eakin, C.M., Knight, J.D., Morgan, C.J., Gelfand, M.A. & Miranker, A.D. Formation of a copper specific binding site in non-native states of beta-2-microglobulin. Biochemistry 41, 10646–10656 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. McParland, V.J. et al. Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro. Biochemistry 39, 8735–8746 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, S., Manning, J., Kad, N.M. & Radford, S.E. Amyloid forming peptides from beta(2)-microglobulin-insights into the mechanism of fibril formation in vitro. J. Mol. Biol. 325, 249–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Esposito, G. et al. Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci. 9, 831–845 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morgan, C.J., Gelfand, M., Atreya, C. & Miranker, A.D. Kidney dialysis-associated amyloidosis: a molecular role for copper in fiber formation. J. Mol. Biol. 309, 339–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Vorbeck-Meister, I., Sommer, R., Vorbeck, F. & Horl, W.H. Quality of water used for haemodialysis: bacteriological and chemical parameters. Nephrol. Dial. Transplant. 14, 666–675 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Eakin, C.M., Attenello, F.J., Morgan, C.J. & Miranker, A.D. Oligomeric assembly of native-like precursors precedes amyloid formation by beta-2 microglobulin. Biochemistry 43, 7808–7815 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. LeVine, H., III . Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cox, C. & Lectka, T. Synthetic catalysis of amide isomerization. Acc. Chem. Res. 33, 849–858 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Jabs, A., Weiss, M.S. & Hilgenfeld, R. Non-proline cis peptide binds in proteins. J. Mol. Biol. 286, 291–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Jones, C.E., Abdelraheim, S.R., Brown, D.R. & Viles, J.H. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J. Biol. Chem. 279, 32018–32027 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Atwood, C.S. et al. Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1–42. J. Neurochem. 75, 1219–1233 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Collins, E.J., Garboczi, D.N. & Wiley, D.C. Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature 371, 626–629 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Villanueva, J. et al. Increase in the conformational flexibility of beta 2-microglobulin upon copper binding: a possible role for copper in dialysis-related amyloidosis. Protein Sci. 13, 797–809 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosano, C. et al. beta2-microglobulin H31Y variant 3D structure highlights the protein natural propensity towards intermolecular aggregation. J. Mol. Biol. 335, 1051–1064 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Trinh, C.H., Smith, D.P., Kalverda, A.P., Phillips, S.E. & Radford, S.E. Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties. Proc. Natl Acad. Sci. USA 99, 9771–9776 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stockel, J., Safar, J., Wallace, A.C., Cohen, F.E. & Prusiner, S.B. Prion protein selectively binds copper(II) ions. Biochemistry 37, 7185–7193 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Wadsworth, J.D. et al. Strain-specific prion-protein conformation determined by metal ions. Nat. Cell Biol. 1, 55–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Bush, A.I. The metallobiology of Alzheimer's disease. Trends Neurosci. 26, 207–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Rasia, R. et al. Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson's disease. Proc. Natl Acad. Sci. USA 102, 4294–4299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones, C., Klewpatinond, M., Abdelraheim, S., Brown, D. & Viles, J. Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. J. Mol. Biol. 346, 1393–1407 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Krishnan, R. & Lindquist, S.L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miranker, A.D. Structural biology: fibres hinge on swapped domains. Nature 437, 197–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Y. & Eisenberg, D. 3D domain swapping: as domains continue to swap. Protein Sci. 11, 1285–1299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanders, A. et al. Cystatin forms a tetramer through structural rearrangement of domain-swapped dimers prior to amyloidogenesis. J. Mol. Biol. 336, 165–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M. & Eisenberg, D. Amyloid-like fibrils of ribonuclease A with three dimensional domain-swapped and native-like structure. Nature 437, 266–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Radford, S.E., Gosal, W.S. & Platt, G.W. Towards an understanding of the structural molecular mechanism of beta92)-microglobulin amyloid formation in vitro. Biochim. Biophys. Acta 1753, 51–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Kameda, A. et al. Nuclear magnetic resonance characterization of the refolding intermediate of beta2-microglobulin trapped by non-native prolyl peptide bond. J. Mol. Biol. 348, 383–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Wedemeyer, W.J., Welker, E. & Scheraga, H.A. Proline cis-trans isomerization and protein folding. Biochemistry 41, 14637–14644 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Pappenberger, G. et al. Nonprolyl cis peptide bonds in unfolded proteins cause complex folding kinetics. Nat. Struct. Biol. 8, 452–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Andreotti, A.H. Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42, 9515–9524 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Lummis, S.C. et al. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438, 248–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Dawson, R.M., Elliot, D.C., Elliot, W.H. & Jones, K.M. Data for Biochemical Research 3rd edn (Clarendon Press, Oxford, 1986).

    Google Scholar 

  50. Bolen, D.W. & Santoro, M.M. Unfolding free energy changes determined by the linear extrapolation method. 2. Incorporation of delta G degrees N-U values in a thermodynamic cycle. Biochemistry 27, 8069–8074 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  PubMed  Google Scholar 

  54. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  57. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  58. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. J. Regan and T. A. Steitz for careful reading of this work and D. E. Engelman and S. A. Strobel for the use of their instruments. We also thank D. Blaho, M. Calabrese, J. Cochrane, S. Kamtekar, M. Strickler, A. Valentine and the staff of the Center for Structural Biology and National Synchrotron Light Source beamline X25 for assistance and helpful discussions. This work was supported by the US National Institutes of Health (grants DK54899 and 1F31NS046937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D Miranker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Effect of Cu2+:β2m stoichiometry on fraction of protein in oligomeric state. (PDF 73 kb)

Supplementary Fig. 2

Effects of protein stability and intrinsic metal affinity on oligomer formation. (PDF 82 kb)

Supplementary Fig. 3

Determination of P32A Kd for Cu2+ by global analysis. (PDF 99 kb)

Supplementary Fig. 4

Relationship between aromatic changes in WT apo- and holo-β2m. (PDF 109 kb)

Supplementary Fig. 5

Representative electron density of β2m P32A mutant (PDB entry 2F8O). (PDF 567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eakin, C., Berman, A. & Miranker, A. A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13, 202–208 (2006). https://doi.org/10.1038/nsmb1068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing