Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry

Abstract

Intramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix α4 approximately 10 Å below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix α5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix α5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the transmembrane core domain of GlpG, an E. coli intramembrane protease of the rhomboid family.
Figure 2: Sequence alignment of rhomboid homologs in diverse species.
Figure 3: Conformation of the active site and the L1 loop.
Figure 4: Mechanisms of water access and substrate entry to the active site.
Figure 5: A proposed model of action for the rhomboid family of intramembrane proteases.
Figure 6: A proposed general mechanism for intramembrane proteases.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Brown, M.S., Ye, J., Rawson, R.B. & Goldstein, J.L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  Google Scholar 

  2. Urban, S. & Freeman, M. Intramembrane proteolysis controls diverse signalling pathways throughout evolution. Curr. Opin. Genet. Dev. 12, 512–518 (2002).

    Article  CAS  Google Scholar 

  3. Wolfe, M.S. & Kopan, R. Intramembrane proteolysis: theme and variations. Science 305, 1119–1123 (2004).

    Article  CAS  Google Scholar 

  4. Ebinu, J.O. & Yankner, B.A.A. RIP tide in neuronal signal transduction. Neuron 34, 499–502 (2002).

    Article  CAS  Google Scholar 

  5. Ehrmann, M. & Clausen, T. Proteolysis as a regulatory mechanism. Annu. Rev. Genet. 38, 709–724 (2004).

    Article  CAS  Google Scholar 

  6. Rawson, R.B. Regulated intramembrane proteolysis: from the endoplasmic reticulum to the nucleus. Essays Biochem. 38, 155–168 (2002).

    Article  CAS  Google Scholar 

  7. Brown, M.S. & Goldstein, J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  Google Scholar 

  8. Rawson, R.B. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57 (1997).

    Article  CAS  Google Scholar 

  9. Mattson, M.P. Pathways towards and away from Alzheimer's disease. Nature 430, 631–639 (2004).

    Article  CAS  Google Scholar 

  10. Xia, W. & Wolfe, M.S. Intramembrane proteolysis by presenilin and presenilin-like proteases. J. Cell Sci. 116, 2839–2844 (2003).

    Article  CAS  Google Scholar 

  11. Urban, S., Lee, J.R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182 (2001).

    Article  CAS  Google Scholar 

  12. Urban, S., Lee, J.R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J. 21, 4277–4286 (2002).

    Article  CAS  Google Scholar 

  13. Wasserman, J.D., Urban, S. & Freeman, M. A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev. 14, 1651–1663 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, J.R., Urban, S., Garvey, C. & Freeman, M. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 107, 161–171 (2001).

    Article  CAS  Google Scholar 

  15. Cipolat, S. et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175 (2006).

    Article  CAS  Google Scholar 

  16. Pellegrini, L. et al. PAMP and PARL, two novel putative metalloproteases interacting with the COOH-terminus of Presenilin-1 and -2. J. Alzheimers Dis. 3, 181–190 (2001).

    Article  CAS  Google Scholar 

  17. Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    Article  CAS  Google Scholar 

  18. McQuibban, G.A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541 (2003).

    Article  CAS  Google Scholar 

  19. Brossier, F., Jewett, T.J., Sibley, L.D. & Urban, S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc. Natl. Acad. Sci. USA 102, 4146–4151 (2005).

    Article  CAS  Google Scholar 

  20. Gallio, M., Sturgill, G., Rather, P. & Kylsten, P. A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc. Natl. Acad. Sci. USA 99, 12208–12213 (2002).

    Article  CAS  Google Scholar 

  21. Maegawa, S., Ito, K. & Akiyama, Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543–13552 (2005).

    Article  CAS  Google Scholar 

  22. Lemberg, M.K. et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464–472 (2005).

    Article  CAS  Google Scholar 

  23. Urban, S. & Wolfe, M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. USA 102, 1883–1888 (2005).

    Article  CAS  Google Scholar 

  24. Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature, advance online publication 11 October 2006 (doi:10.1038/nature05255).

  25. Koonin, E.V. et al. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19 (2003).

    Article  Google Scholar 

  26. Daley, D.O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005).

    Article  CAS  Google Scholar 

  27. O'Donnell, R.A. et al. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J. Cell Biol. 174, 1023–1033 (2006).

    Article  CAS  Google Scholar 

  28. Zhou, X.W., Blackman, M.J., Howell, S.A. & Carruthers, V.B. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol. Cell. Proteomics 3, 565–576 (2004).

    Article  CAS  Google Scholar 

  29. Opitz, C. et al. Intramembrane cleavage of microneme proteins at the surface of the apicomplexan parasite Toxoplasma gondii. EMBO J. 21, 1577–1585 (2002).

    Article  CAS  Google Scholar 

  30. Urban, S. & Freeman, M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell 11, 1425–1434 (2003).

    Article  CAS  Google Scholar 

  31. Howell, S.A. et al. Distinct mechanisms govern proteolytic shedding of a key invasion protein in apicomplexan pathogens. Mol. Microbiol. 57, 1342–1356 (2005).

    Article  CAS  Google Scholar 

  32. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  Google Scholar 

  33. Lazarov, V.K. et al. Electron microscopic structure of purified, active gamma-secretase reveals an aqueous intramembrane chamber and two pores. Proc. Natl. Acad. Sci. USA 103, 6889–6894 (2006).

    Article  CAS  Google Scholar 

  34. Ogura, T. et al. Three-dimensional structure of the gamma-secretase complex. Biochem. Biophys. Res. Commun. 343, 525–534 (2006).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  37. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  38. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  39. Chen, F. et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287, 1485–1489 (2000).

    Article  CAS  Google Scholar 

  40. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  41. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Saxena at Brookhaven National Laboratory National Synchrotron Light Source beamlines for help, J. Chai and Q. Liu for technical discussion and Y. Ha (Yale University) for the atomic coordinates of GlpG. This work was supported by Princeton University (Y.S.). Work in the Urban laboratory is supported by US National Institutes of Health grant 1R01AI066025 and a Career Award in the Biomedical Sciences from the Burroughs-Wellcome Fund (to S.U.).

Author information

Authors and Affiliations

Authors

Contributions

Z.W., N.Y., L.F., A.O. and H.Y. contributed to the design and execution of the structural biology project. R.P.B. and S.U. contributed to the enzymatic characterization of GlpG. Z.W., N.Y. and P.D.J. contributed to data collection. L.G. contributed to structure refinement. Y.S. contributed to overall guidance of the project and manuscript preparation. Z.W., N.Y., L.F. and S.U. commented on the manuscript.

Corresponding author

Correspondence to Yigong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Comparison of GlpG structure in the closed state (ref. 24) with that in the open state (molecule A). GlpG structure in the closed state (ref. 24) is viewed from the top (video 1) or the side (video 2) of the active-site cavity in the two videos. The putative catalytic dyad residues Ser201 and His254 are shown. The GlpG structure shown half-way through the video is the open state (molecule A). Note the large conformational changes in the transmembrane helix α5 and the L5 loop between the closed and open states of GlpG. (MPG 3230 kb)

Supplementary Video 2

Comparison of GlpG structure in the closed state (ref. 24) with that in the open state (molecule A). GlpG structure in the closed state (ref. 24) is viewed from the top (video 1) or the side (video 2) of the active-site cavity in the two videos. The putative catalytic dyad residues Ser201 and His254 are shown. The GlpG structure shown half-way through the video is the open state (molecule A). Note the large conformational changes in the transmembrane helix α5 and the L5 loop between the closed and open states of GlpG. (MPG 3129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Yan, N., Feng, L. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat Struct Mol Biol 13, 1084–1091 (2006). https://doi.org/10.1038/nsmb1179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing