Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation

An Erratum to this article was published on 01 November 2006

This article has been updated

Abstract

Kasugamycin (Ksg) specifically inhibits translation initiation of canonical but not of leaderless messenger RNAs. Ksg inhibition is thought to occur by direct competition with initiator transfer RNA. The 3.35-Å structure of Ksg bound to the 30S ribosomal subunit presented here provides a structural description of two Ksg-binding sites as well as a basis for understanding Ksg resistance. Notably, neither binding position overlaps with P-site tRNA; instead, Ksg mimics codon nucleotides at the P and E sites by binding within the path of the mRNA. Coupled with biochemical experiments, our results suggest that Ksg indirectly inhibits P-site tRNA binding through perturbation of the mRNA-tRNA codon-anticodon interaction during 30S canonical initiation. In contrast, for 70S-type initiation on leaderless mRNA, the overlap between mRNA and Ksg is reduced and the binding of tRNA is further stabilized by the presence of the 50S subunit, minimizing Ksg efficacy.

*NOTE: In the version of this article initially published, the author name Mikako Shirouzo was spelled incorrectly. The correct author name is Mikako Shirouzu. This error has been corrected in the HTML and PDF versions of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The primary and secondary Ksg-binding sites on the T. thermophilus 30S subunit.
Figure 2: Interaction of Ksg with the 30S subunit.
Figure 3: Ksg overlaps with P-site mRNA but not P-tRNA.
Figure 4: Inhibition of P-site tRNA binding by Ksg.
Figure 5: Lack of methylation of A1518 and A1519 confers Ksg resistance indirectly.
Figure 6: Model for Ksg action during translation initiation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 19 October 2006

    Changed 9th author name

References

  1. Umezawa, H., Hamada, M., Suhara, Y., Hashimoto, T. & Ikekawa, T. Kasugamycin, a new antibiotic. Antimicrob. Agents Chemother. 5, 753–757 (1965).

    CAS  PubMed  Google Scholar 

  2. Suhara, Y., Maeda, K. & Umezawa, H. Chemical studies on kasugamycin. V. The structure of kasugamycin. Tetrahedr. Lett. 12, 1239–1244 (1966).

    Article  CAS  Google Scholar 

  3. Hamada, M. et al. Antimicrobial activity of kasugamycin. J. Antibiot. 18, 104–106 (1965).

    CAS  PubMed  Google Scholar 

  4. Takeuchi, T. et al. Pharmacology of kasugamycin and the effect on Pseudomonas infection. J. Antibiot. 18, 107–110 (1965).

    CAS  PubMed  Google Scholar 

  5. Tanaka, N., Yoshida, Y., Sashikata, K., Yamaguchi, H. & Umezawa, H. Inhibition of polypeptide synthesis by kasugamycin, an aminoglycosidic antibiotic. J. Antibiot. 19, 65–68 (1966).

    CAS  PubMed  Google Scholar 

  6. Masukawa, H., Tanaka, N. & Umezawa, H. Inhibition by kasugamycin of protein synthesis in Piricularia oryzae. J. Antibiot. 21, 73–74 (1968).

    Article  CAS  Google Scholar 

  7. Cassan, M., Berteaux, V., Angrand, P.O. & Rousset, J.P. Expression vectors for quantitating in vivo translational ambiguity: their potential use to analyse frameshifting at the HIV gag-pol junction. Res. Virol. 141, 597–610 (1990).

    Article  CAS  Google Scholar 

  8. Van Buul, C.P., Visser, W. & Van Knippenberg, P.H. Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harboring the ksgA gene. FEBS Lett. 177, 119–124 (1984).

    Article  CAS  Google Scholar 

  9. Davies, J., Gilbert, W. & Gorini, L. Streptomycin, suppression, and the code. Proc. Natl. Acad. Sci. USA 51, 883–890 (1964).

    Article  CAS  Google Scholar 

  10. Okuyama, A., Machiyama, N., Kinoshita, T. & Tanaka, N. Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochem. Biophys. Res. Commun. 43, 196–199 (1971).

    Article  CAS  Google Scholar 

  11. Poldermans, B., Goosen, N. & Van Knippenberg, P.H. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein synthesis. J. Biol. Chem. 254, 9085–9089 (1979).

    CAS  PubMed  Google Scholar 

  12. Chin, K., Shean, C.S. & Gottesman, M.E. Resistance of lambda cI translation to antibiotics that inhibit translation initiation. J. Bacteriol. 175, 7471–7473 (1993).

    Article  CAS  Google Scholar 

  13. Moll, I. & Bläsi, U. Differential inhibition of 30S and 70S translation initiation complexes on leaderless mRNA by kasugamycin. Biochem. Biophys. Res. Commun. 297, 1021–1026 (2002).

    Article  CAS  Google Scholar 

  14. Okuyama, A., Tanaka, N. & Komai, T. The binding of kasugamycin to the Escherichia coli ribosomes. J. Antibiot. 28, 903–905 (1975).

    Article  CAS  Google Scholar 

  15. Woodcock, J., Moazed, D., Cannon, M., Davies, J. & Noller, H.F. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J. 10, 3099–3103 (1991).

    Article  CAS  Google Scholar 

  16. Helser, T.L., Davies, J.E. & Dahlberg, J.E. Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat. New Biol. 233, 12–14 (1971).

    Article  CAS  Google Scholar 

  17. Helser, T.L., Davies, J.E. & Dahlberg, J.E. Mechanism of kasugamycin resistance in Escherichia coli. Nat. New Biol. 235, 6–9 (1972).

    Article  CAS  Google Scholar 

  18. Vila-Sanjurjo, A., Squires, C.L. & Dahlberg, A.E. Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli. J. Mol. Biol. 293, 1–8 (1999).

    Article  CAS  Google Scholar 

  19. Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  Google Scholar 

  20. Pioletti, M. et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20, 1829–1839 (2001).

    Article  CAS  Google Scholar 

  21. Wilson, D.N. Antibiotics and the inhibition of ribosome function. in Protein Synthesis and Ribosome Structure (eds. Nierhaus, K.H. & Wilson, D.N.) 449–527 (Wiley-VCH, Weinheim, Germany, 2004).

    Google Scholar 

  22. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005).

    Article  CAS  Google Scholar 

  23. Moazed, D. & Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394 (1987).

    Article  CAS  Google Scholar 

  24. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  25. Jenner, L. et al. Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science 308, 120–123 (2005).

    Article  CAS  Google Scholar 

  26. Gnirke, A. & Nierhaus, K.H. tRNA binding sites on the subunits of Escherichia coli ribosomes. J. Biol. Chem. 261, 14506–14514 (1986).

    CAS  PubMed  Google Scholar 

  27. Heus, H.A., Formenoy, L.J. & Van Knippenberg, P.H. Conformational and thermodynamic effects of naturally occurring base methylations in a ribosomal RNA hairpin of Bacillus stearothermophilus. Eur. J. Biochem. 188, 275–281 (1990).

    Article  CAS  Google Scholar 

  28. Van Charldorp, R., Verhoeven, J.J., Van Knippenberg, P.H., Haasnoot, C.A. & Hilbers, C.W. A carbon-13 nuclear magnetic resonance study of the 3′-terminus of 16S ribosomal RNA of Escherichia coli specifically labeled with carbon-13 in the methylgroups of the m26Am26A sequence. Nucleic Acids Res. 10, 4237–4245 (1982).

    Article  CAS  Google Scholar 

  29. Hobartner, C., Ebert, M., Jaun, B. & Micura, R. RNA two-state conformation equilibria and the effect of nucleobase methylation. Angew. Chem. Int. Edn Engl. 41, 605–609 (2002).

    Article  CAS  Google Scholar 

  30. Vila-Sanjurjo, A. & Dahlberg, A.E. Mutational analysis of the conserved bases C1402 and A1500 in the center of the decoding domain of Escherichia coli 16 S rRNA reveals an important tertiary interaction. J. Mol. Biol. 308, 457–463 (2001).

    Article  CAS  Google Scholar 

  31. Hirashima, A., Childs, G. & Inouye, M. Differential inhibitory effects of antibiotics on the biosynthesis of envelope proteins of Escherichia coli. J. Mol. Biol. 79, 373–389 (1973).

    Article  CAS  Google Scholar 

  32. Tanaka, N., Yamaguchi, H. & Umezawa, H. Mechanism of kasugamycin action on polypeptide synthesis. J. Biochem. 60, 429–434 (1966).

    Article  CAS  Google Scholar 

  33. Okuyama, A. & Tanaka, N. Differential effects of aminoglycosides on cistron-specific initiation of protein synthesis. Biochem. Biophys. Res. Commun. 49, 951–957 (1972).

    Article  CAS  Google Scholar 

  34. Kozak, M. & Nathans, D. Differential inhibition of coliphage MS2 protein synthesis by ribosome- directed antibiotics. J. Mol. Biol. 70, 41–55 (1972).

    Article  CAS  Google Scholar 

  35. Studer, S. & Joseph, S. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol. Cell 22, 105–115 (2006).

    Article  CAS  Google Scholar 

  36. de Smit, M.H. & van Duin, J. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244, 144–150 (1994).

    Article  CAS  Google Scholar 

  37. Moazed, D. & Noller, H.F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57, 585–597 (1989).

    Article  CAS  Google Scholar 

  38. Schäfer, M.A. et al. Codon-anticodon interaction at the P site is a prerequisite for tRNA interaction with the small ribosomal subunit. J. Biol. Chem. 277, 19095–19105 (2002).

    Article  Google Scholar 

  39. Gualerzi, C.O. & Pon, C.L. Initiation of messenger-RNA translation in prokaryotes. Biochemistry 29, 5881–5889 (1990).

    Article  CAS  Google Scholar 

  40. Moll, I. et al. Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res. 32, 3354–3363 (2004).

    Article  CAS  Google Scholar 

  41. Udagawa, T. et al. Evidence for the translation initiation of leaderless mRNAs by the intact 70 S ribosome without its dissociation into subunits in eubacteria. J. Biol. Chem. 279, 8539–8546 (2004).

    Article  CAS  Google Scholar 

  42. Blaha, G. et al. Preparation of functional ribosomal complexes and the effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol. 317, 292–309 (2000).

    Article  CAS  Google Scholar 

  43. Rheinberger, H.-J., Geigenmüller, U., Wedde, M. & Nierhaus, K.H. Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding. Methods Enzymol. 164, 658–670 (1988).

    Article  CAS  Google Scholar 

  44. Sharma, M.R. et al. Interaction of Era with the 30S ribosomal subunit: implications for 30S subunit assembly. Mol. Cell 18, 319–329 (2005).

    Article  CAS  Google Scholar 

  45. Schluenzen, F. et al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102, 615–623 (2000).

    Article  CAS  Google Scholar 

  46. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  47. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  48. Brunger, A. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  49. Diaconu, M. et al. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121, 991–1004 (2005).

    Article  CAS  Google Scholar 

  50. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Albrecht, J. Buerger, B. Schmidt and M. Nomura for technical assistance and S. Connell for helpful discussions. These studies could not have been performed without the expert assistance of the staff, especially T. Tomizaki and C. Schulze-Briese, at the X06SA beamline (Swiss Light Source). This work was funded by the RIKEN Structural Genomics/Proteomics Initiative and the National Project on Protein Structural and Functional Analyses, Ministry of Education, Culture, Sports, Science and Technology of Japan (S.Y.) and by the Deutsche Forschungs Gemeinschaft (FU579 to P.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shigeyuki Yokoyama or Paola Fucini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Stereo image of density for Ksg bound within the primary and secondary sites. (PDF 202 kb)

Supplementary Fig. 2

Phylogenetic conservation of 16S rRNA and comparison of Ksg2 binding site on 30S and 70S ribosomes. (PDF 150 kb)

Supplementary Fig. 3

Position of Ksg relative to Spur-ASL, tRNA and mRNA. (PDF 134 kb)

Supplementary Table 1

Data collection and refinement statistics. (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schluenzen, F., Takemoto, C., Wilson, D. et al. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 13, 871–878 (2006). https://doi.org/10.1038/nsmb1145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing