Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses

Abstract

Lactococcus lactis is a Gram-positive bacterium used extensively by the dairy industry for the manufacture of fermented milk products. The double-stranded DNA bacteriophage p2 infects specific L. lactis strains using a receptor-binding protein (RBP) located at the tip of its noncontractile tail. We have solved the crystal structure of phage p2 RBP, a homotrimeric protein composed of three domains: the shoulders, a β-sandwich attached to the phage; the neck, an interlaced β-prism; and the receptor-recognition head, a seven-stranded β-barrel. We used the complex of RBP with a neutralizing llama VHH domain to identify the receptor-binding site. Structural similarity between the recognition-head domain of phage p2 and those of adenoviruses and reoviruses, which invade mammalian cells, suggests that these viruses, despite evolutionary distant targets, lack of sequence similarity and the different chemical nature of their genomes (DNA versus RNA), might have a common ancestral gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The receptor-binding protein from lactococcal phage p2.
Figure 2: Individual domains of the receptor-binding protein from phage p2.
Figure 3: The complex of the phage p2 RBP head with VHH5.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Moineau, S., Tremblay, D. & Labrie, S. Phages of lactic acid bacteria: from genomics to industrial applications. ASM News 68, 388–393 (2002).

    Google Scholar 

  2. Labrie, S. & Moineau, S. Complete genomic sequence of bacteriophage ul36: demonstration of phage heterogeneity within the P335 quasi-species of lactococcal phages. Virology 296, 308–320 (2002).

    Article  CAS  Google Scholar 

  3. Jarvis, A.W. et al. Species and type phages of lactococcal bacteriophages. Intervirology 32, 2–9 (1991).

    Article  CAS  Google Scholar 

  4. Valyasevi, R., Sandine, W.E. & Geller, B.L. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 56, 1882–1889 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dupont, K., Vogensen, F.K., Neve, H., Bresciani, J. & Josephsen, J. Identification of the receptor-binding protein in 936-species lactococcal bacteriophages. Appl. Environ. Microbiol. 70, 5818–5824 (2004).

    Article  CAS  Google Scholar 

  6. Duplessis, M. & Moineau, S. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol. Microbiol. 41, 325–336 (2001).

    Article  CAS  Google Scholar 

  7. Schafer, A., Geis, A., Neve, H. & Teuber, M. Bacteriophage receptors of Lactococcus lactis subsp. diacetylactis F7/2 and Lactococcus lactis subsp. cremoris Wg2–1. FEMS Microbiol. Lett. 62, 69–73 (1991).

    CAS  PubMed  Google Scholar 

  8. Muyldermans, S., Cambillau, C. & Wyns, L. Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem. Sci. 26, 230–235 (2001).

    Article  CAS  Google Scholar 

  9. Ledeboer, A.M. et al. Preventing phage lysis of Lactococcus lactis in cheese production using a neutralizing heavy-chain antibody fragment from llama. J. Dairy Sci. 85, 1376–1382 (2002).

    Article  CAS  Google Scholar 

  10. De Haard, H.J. et al. Llama antibodies against a lactococcal protein located at the tip of the phage tail prevent phage infection. J. Bacteriol. 187, 4531–4541 (2005).

    Article  CAS  Google Scholar 

  11. Chappell, J.D., Prota, A.E., Dermody, T.S. & Stehle, T. Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO J. 21, 1–11 (2002).

    Article  CAS  Google Scholar 

  12. Burmeister, W.P., Guilligay, D., Cusack, S., Wadell, G. & Arnberg, N. Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J. Virol. 78, 7727–7736 (2004).

    Article  CAS  Google Scholar 

  13. van Raaij, M.J., Mitraki, A., Lavigne, G. & Cusack, S. A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935–938 (1999).

    Article  CAS  Google Scholar 

  14. van Raaij, M.J., Schoehn, G., Burda, M.R. & Miller, S. Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. J. Mol. Biol. 314, 1137–1146 (2001).

    Article  CAS  Google Scholar 

  15. Kanamaru, S. et al. Structure of the cell-puncturing device of bacteriophage T4. Nature 415, 553–557 (2002).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  17. Thomassen, E. et al. The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold. J. Mol. Biol. 331, 361–373 (2003).

    Article  CAS  Google Scholar 

  18. Xu, L., Benson, S.D., Butcher, S.J., Bamford, D.H. & Burnett, R.M. The receptor binding protein P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. Structure (Camb). 11, 309–322 (2003).

    Article  CAS  Google Scholar 

  19. Fass, D. et al. Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution. Science 277, 1662–1666 (1997).

    Article  CAS  Google Scholar 

  20. Gibbons, D.L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).

    Article  CAS  Google Scholar 

  21. Modis, Y., Ogata, S., Clements, D. & Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).

    Article  CAS  Google Scholar 

  22. Dormitzer, P.R., Sun, Z.Y., Wagner, G. & Harrison, S.C. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J. 21, 885–897 (2002).

    Article  CAS  Google Scholar 

  23. Desmyter, A. et al. Three camelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition and versatility of binding topology. J. Biol. Chem. 277, 23645–23650 (2002).

    Article  CAS  Google Scholar 

  24. Bourne, Y. et al. Structures of a legume lectin complexed with the human lactotransferrin N2 fragment, and with an isolated biantennary glycopeptide: role of the fucose moiety. Structure 2, 209–219 (1994).

    Article  CAS  Google Scholar 

  25. Bourne, Y. et al. Three-dimensional structures of complexes of Lathyrus ochrus isolectin I with glucose and mannose: fine specificity of the monosaccharide-binding site. Proteins 8, 365–376 (1990).

    Article  CAS  Google Scholar 

  26. Chandry, P.S., Moore, S.C., Boyce, J.D., Davidson, B.E. & Hillier, A.J. Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol. Microbiol. 26, 49–64 (1997).

    Article  CAS  Google Scholar 

  27. Crutz-Le Coq, A.M., Cesselin, B., Commissaire, J. & Anba, J. Sequence analysis of the lactococcal bacteriophage bIL170: insights into structural proteins and HNH endonucleases in dairy phages. Microbiol. 148, 985–1001 (2002).

    Article  CAS  Google Scholar 

  28. George, D.G., Yeh, L.S. & Barker, W.C. Unexpected relationships between bacteriophage lambda hypothetical proteins and bacteriophage T4 tail-fiber proteins. Biochem. Biophys. Res. Commun. 115, 1061–1068 (1983).

    Article  CAS  Google Scholar 

  29. Tetart, F. et al. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J. Bacteriol. 183, 358–366 (2001).

    Article  CAS  Google Scholar 

  30. Hendrix, R.W. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61, 471–480 (2002).

    Article  Google Scholar 

  31. Bamford, D.H. Do viruses form lineages across different domains of life? Res. Microbiol. 154, 231–236 (2003).

    Article  CAS  Google Scholar 

  32. Benson, S.D., Bamford, J.K., Bamford, D.H. & Burnett, R.M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).

    Article  CAS  Google Scholar 

  33. Rice, G. et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc. Natl. Acad. Sci. USA 101, 7716–7720 (2004).

    Article  CAS  Google Scholar 

  34. Gibbons, D.L. et al. Visualization of the target-membrane-inserted fusion protein of Semliki Forest virus by combined electron microscopy and crystallography. Cell 114, 573–583 (2003).

    Article  CAS  Google Scholar 

  35. Benson, S.D., Bamford, J.K., Bamford, D.H. & Burnett, R.M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999).

    Article  CAS  Google Scholar 

  36. Collaborative Computational Project, Number 4. The CCP4 suite: programs for crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–766 (1994).

  37. Leslie, A.G. Integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 55, 1696–1702 (1999).

    Article  CAS  Google Scholar 

  38. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).

    Article  CAS  Google Scholar 

  39. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  40. Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003).

    Article  CAS  Google Scholar 

  41. Murshudov, G., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  42. Roussel, A. & Cambillau, C. The TURBO-FRODO graphics package. in Silicon Graphics Geometry Partners Directory 86 (Silicon Graphics, Mountain View, USA, 1991).

    Google Scholar 

  43. Laskowski, R., MacArthur, M., Moss, D. & Thornton, J. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 91–97 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Marseille-Nice Genopole, by the European Union's Structural Proteomics in Europe program (fifth PCRDT, QLG2-CT-2002-00988) and by a grant from the Natural Sciences and Engineering Research Council of Canada. C. Huyghe is greatly acknowledged for protein production and D. Tremblay (Laval University, Quebec, Canada) for phage p2 DNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Cambillau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Top view of the p2 rbp head–VHH5 complex. (PDF 990 kb)

Supplementary Fig. 2

Electron density map of residues 230–234. (PDF 806 kb)

Supplementary Table 1

Interactions of the receptor binding domain with VHH mono5 (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spinelli, S., Desmyter, A., Verrips, C. et al. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat Struct Mol Biol 13, 85–89 (2006). https://doi.org/10.1038/nsmb1029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing