Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular architecture of a eukaryotic DNA transposase

Abstract

Mobile elements and their inactive remnants account for large proportions of most eukaryotic genomes, where they have had central roles in genome evolution. Over 50 years ago, McClintock reported a form of stress-induced genome instability in maize in which discrete DNA segments move between chromosomal locations. Our current mechanistic understanding of enzymes catalyzing transposition is largely limited to prokaryotic transposases. The Hermes transposon from the housefly is part of the eukaryotic hAT superfamily that includes hobo from Drosophila, McClintock's maize Activator and Tam3 from snapdragon. We report here the three-dimensional structure of a functionally active form of the transposase from Hermes at 2.1-Å resolution. The Hermes protein has some structural features of prokaryotic transposases, including a domain with a retroviral integrase fold. However, this domain is disrupted by the insertion of an additional domain. Finally, transposition is observed only when Hermes assembles into a hexamer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Hermes79–612.
Figure 2: Hermes79–61g dimerizes through domain swapping.
Figure 3: The hexameric form of Hermes79–612.
Figure 4: Schematic of the mechanism of Hermes transposition.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kazazian, H.H. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    Article  CAS  Google Scholar 

  2. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  3. Ostertag, E.M. & Kazazian, H.H., Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501–538 (2001).

    Article  CAS  Google Scholar 

  4. Plasterk, R.H.A. & van Luenen, H.G.A.M. In Mobile DNA II (ed. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M.) 519–532 (ASM Press, Washington, DC, USA, 2002).

    Book  Google Scholar 

  5. Calvi, B.R., Hong, T.J., Findley, S.D. & Gelbart, W.M. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66, 465–471 (1991).

    Article  CAS  Google Scholar 

  6. McClintock, B. Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol. 16, 13–47 (1951).

    Article  CAS  Google Scholar 

  7. Warren, W.D., Atkinson, P.W. & O'Brochta, D.A. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet. Res. 64, 87–97 (1994).

    Article  CAS  Google Scholar 

  8. Zhou, L. et al. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432, 995–1001 (2004).

    Article  CAS  Google Scholar 

  9. Roth, D.B., Menetski, J.P., Nakajima, P.B., Bosma, M.J. & Gellert, M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70, 983–991 (1992).

    Article  CAS  Google Scholar 

  10. McBlane, J.F. et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83, 387–395 (1995).

    Article  CAS  Google Scholar 

  11. Perez, Z.N., Musingarimi, P., Craig, N.L., Dyda, F. & Hickman, A.B. Purification, crystallization, and preliminary crystallographic analysis of the Hermes transposase. Acta Crystallogr. F61, 587–590 (2005).

    Google Scholar 

  12. Dyda, F. et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981–1986 (1994).

    Article  CAS  Google Scholar 

  13. Curcio, M.J. & Derbyshire, K.M. The outs and ins of transposition: from Mu to kangaroo. Nat. Rev. Mol. Cell Biol. 4, 865–877 (2003).

    Article  CAS  Google Scholar 

  14. Michel, K. & Atkinson, P.W. Nuclear localization of the Hermes transposase depends on basic amino acid residues at the N-terminus of the protein. J. Cell. Biochem. 89, 778–790 (2003).

    Article  CAS  Google Scholar 

  15. Aravind, L. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem. Sci. 25, 421–423 (2000).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Dali/FSSP classification of three-dimensional protein folds. Nucleic Acids Res. 25, 231–234 (1997).

    Article  CAS  Google Scholar 

  17. Davies, D.R., Goryshin, I.Y., Reznikoff, W.S. & Rayment, I. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289, 77–85 (2000).

    Article  CAS  Google Scholar 

  18. Ason, B. & Reznikoff, W.S. Mutational analysis of the base flipping event found in Tn5 transposition. J. Biol. Chem. 277, 11284–11291 (2002).

    Article  CAS  Google Scholar 

  19. Feldmar, S. & Kunze, R. The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO J. 10, 4003–4010 (1991).

    Article  CAS  Google Scholar 

  20. Marchler-Bauer, A. et al. CDD: a conserved domain database for protein classification. Nucleic Acids Res. 33, D192–D196 (2005).

    Article  CAS  Google Scholar 

  21. Thompson, C.B. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3, 531–539 (1995).

    Article  CAS  Google Scholar 

  22. van Gent, D.C., Mizuuchi, K. & Gellert, M. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271, 1592–1594 (1996).

    Article  CAS  Google Scholar 

  23. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  Google Scholar 

  24. Landree, M.A., Wibbenmeyer, J.A. & Roth, D.B. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13, 3059–3069 (1999).

    Article  CAS  Google Scholar 

  25. Kim, D.R., Dai, Y., Mundy, C.L., Yang, W. & Oettinger, M.A. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13, 3070–3080 (1999).

    Article  CAS  Google Scholar 

  26. Huye, L.E., Purugganan, M.M., Jiang, M.M. & Roth, D.B. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol. Cell. Biol. 22, 3460–3473 (2002).

    Article  CAS  Google Scholar 

  27. De, P. & Rodgers, K.K. Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunol. Rev. 200, 70–82 (2004).

    Article  CAS  Google Scholar 

  28. Larsen, T.A., Olson, A.J. & Goodsell, D.S. Morphology of protein-protein interfaces. Structure 6, 421–427 (1998).

    Article  CAS  Google Scholar 

  29. Michel, K., O'Brochta, D.A. & Atkinson, P.W. The C-terminus of the Hermes transposase contains a protein multimerization domain. Insect Biochem. Mol. Biol. 33, 959–970 (2003).

    Article  CAS  Google Scholar 

  30. Yuan, J.F., Beniac, D.R., Chaconas, G. & Ottensmeyer, F.P. 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition. Genes Dev. 19, 840–852 (2005).

    Article  CAS  Google Scholar 

  31. Namgoong, S.Y. & Harshey, R.M. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition. EMBO J. 17, 3775–3785 (1998).

    Article  CAS  Google Scholar 

  32. Williams, T.L., Jackson, E.L., Carritte, A. & Baker, T.A. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Genes Dev. 13, 2725–2737 (1999).

    Article  CAS  Google Scholar 

  33. Kennedy, A.K., Haniford, D.B. & Mizuuchi, K. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: Insights from phosphorothioate stereoselectivity. Cell 101, 295–305 (2000).

    Article  CAS  Google Scholar 

  34. Smit, A.F.A. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9, 657–663 (1999).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. Sheldrick, G.M. SHELX: applications to macromolecules. in Direct Methods for Solving Macromolecular Structures (S. Fortier, ed.) 401–411 (Kluwer, Dordrecht, The Netherlands, 1998).

    Chapter  Google Scholar 

  37. Furey, W. & Swaminathan, S. PHASES-95: a program package for processing and analyzing diffraction data from macromolecules. Methods Enzymol. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

  38. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  39. Brünger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998).

    Google Scholar 

  40. Christopher, J.A. SPOCK The Structural Properties Observation and Calculation Kit (Program Manual) (The Center for Macromolecular Design, Texas A&M University, College Station, Texas, USA, 1998).

  41. Persistence of Vision Pty. Ltd. Persistence of Vision Raytracer (Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia, 2004).

  42. DeLano, W.L. The PyMol Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank M. Gellert, S. Vasudevan and D. Ronning for helpful discussions and comments on the manuscript. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Basic Energy Sciences, Office of Science, under contract no. W-31-109-Eng-38. This study used the high-performance computational capabilities of the Helix Systems at the National Institutes of Health, Bethesda, MD (http://helix.nih.gov). N.L.C. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Dyda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Electron density maps of Hermes 70–612. (PDF 11787 kb)

Supplementary Fig. 2

DNA binding by Hermes, assessed by co-elution during size exclusion chromatography, requires the 79–150 domain. (PDF 1206 kb)

Supplementary Fig. 3

Sedimentation equilibrium profiles for heterotetrameric (D1) and hexameric (H) Hermes 79–612. (PDF 2439 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickman, A., Perez, Z., Zhou, L. et al. Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol 12, 715–721 (2005). https://doi.org/10.1038/nsmb970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing